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Abstract 

This paper evaluates the performance of machine learning methods in forecasting European stock 

returns. Compared to a linear benchmark model, interactions and nonlinear effects help improve pre-

dictive performance. But machine learning models must be adequately trained and tuned to overcome 

the high dimensionality issue and to avoid overfitting. Across all machine learning methods, the most 

important predictors are based on price trends and fundamental signals from valuation ratios. How-

ever, the models exhibit substantial variations in statistical performance that translate into pronounced 

differences in economic profitability. The return and risk measures of long-only trading strategies 

indicate that machine learning models produce sizeable gains relative to our benchmark. Neural net-

works perform best, also after accounting for transaction costs. A classification-based portfolio for-

mation, utilizing a support vector machine that avoids estimating stock-level expected returns, per-

forms even better than the neural network architecture. 
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1. Introduction 

This paper addresses two complementary topics in the empirical asset pricing literature: stock return 

prediction and machine learning. The traditional forecasting literature applies statistical models to estimate 

future stock returns along two strands: time series (TS) predictions, and cross-sectional (CS) predictions. 

TS models typically conduct time series regressions of broad aggregate portfolio returns on a number of 

macroeconomic variables, including valuation ratios, interest rates, and interest rate spreads, and on tech-

nical indicators (Cochrane, 2011; Rapach and Zhou, 2013). CS models, in contrast, usually explain differ-

ences in expected returns across stocks as a function of stock-level characteristics, such as size, value, and 

momentum (Fama and French, 1993; Jegadeesh and Titman, 1993; Lewellen, 2015). This approach typi-

cally runs Fama and MacBeth (1973) regressions (FM regressions). 

In most applications, in line with the traditional asset pricing literature, TS and CS models consider 

only linear relationships between financial variables and subsequent stock returns. For example, the Capital 

Asset Pricing Model (CAPM) introduced by Sharpe (1964), Lintner (1965), and Mossin (1966) posits that, 

in equilibrium, a stock’s expected return is solely driven by its sensitivity to a systematic risk factor, i.e., 

the market risk. An assumption is that the underlying pricing kernel is linear in only a single factor, i.e., 

the market portfolio.1 Various studies, however, report violations of this assumption (see, e.g., Hou, Xue, 

Zhang, 2020, for a comprehensive list of asset pricing anomalies), and study alternative asset pricing mod-

els. Following Dittmar (2002), we classify them into two subcategories. The first subcategory utilizes fac-

tors in addition to the market portfolio to determine asset prices. Most prominently, Fama and French (1993, 

1995, 1996) propose a multifactor alternative to the CAPM, and find that it is better at explaining cross-

sectional variation in expected returns than the CAPM. Other examples include Ross’ (1976) Asset Pricing 

Theory (APT) or Merton’s (1973) intertemporal CAPM (ICAPM). The second subcategory abandons the 

restriction that the pricing kernel must be linear in factors. Bansal et al. (1993), Bansal and Viswanathan 

                                                 
1 In modern asset pricing representations, the pricing kernel refers to the intertemporal marginal rate of substitution or 

stochastic discount factor 𝑚𝑡+1 in the Euler equation, i.e., 𝐸[(1 + 𝑅𝑖,𝑡+1) × 𝑚𝑡+1|Ω𝑡] = 1, which expresses the first-

order condition of an investor’s intertemporal consumption-investment problem. (1 + 𝑅𝑖,𝑡+1) denotes the total return 

on asset 𝑖, and Ω𝑡 is the information set available to investors at time 𝑡. The stochastic discount factor 𝑚𝑡+1 represents 

the pricing kernel that prices all risky assets, assuming that the law of one price holds. It is specified differently in 

different asset pricing models (see Cochrane, 2005, for a textbook treatment). 
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(1993), Chapman (1997), Dittmar (2002), and Asgharian and Karlsson (2008), among others, explore var-

ious nonlinear pricing kernels, and show that such specifications outperform linear counterparts. 

While the first subcategory of models motivates the use of multiple factors, the second subcategory 

suggests that using interactions between factors and incorporating nonlinear relationships between price-

related variables and expected stock returns add incremental explanatory power. A problem arises particu-

larly in a prediction context, because the convexity of the least squares objective tends to emphasize heavy-

tailed observations. Therefore, with an increasing number of predictors, simple linear models begin to over-

fit noise rather than extract signals, thereby undermining the stability of predictions. Since financial data 

are inherently noisy, predictors potentially multicollinear, and the relationships between predictor variables 

and expected returns likely interactive and nonlinear as well as time-varying and/or contextual, it seems 

virtually impossible for simple linear models to generate reliable forecasts of future stock returns. 

Machine learning can help overcome the high dimensionality issue by combining many weak sources 

of information into a strong composite forecast. According to Gu, Kelly, and Xiu (2020; p.2225), “[t]he 

definition of machine learning is inchoate and is often context specific. [It] […] describe[s] (i) a diverse 

collection of high-dimensional models for statistical prediction, combined with (ii) so-called “regulariza-

tion” methods for model selection and mitigation of overfit, and (iii) efficient algorithms for searching 

among a vast number of potential model specifications.” 

In our empirical analysis, we exploit a set of twenty-two predictors as per the linear FM regressions 

approach used in Drobetz et al. (2019). This is our benchmark model, and it is able to explain a substantial 

percentage of the cross-sectional variation in European stock returns. Against this established conservative 

benchmark, we compare the performance of different machine learning methods in forecasting stock re-

turns, from both a statistical and an economic perspective. Our objective is to examine whether incorporat-

ing interactions between predictor variables and nonlinear effects leads to incremental predictive power. 

Our empirical analysis closely follows that of Gu, Kelly, and Xiu (2020), with several key differ-

ences: First, we use European data. Second, we use an established linear benchmark model with a parsimo-
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nious set of twenty-two predictors, rather than a comprehensive set of predictor variables from the volumi-

nous literature. Third, in addition to inspecting changes in a forecast model’s degree of complexity over 

time, our tests show the importance of each predictor in a given model over the full sample period, but we 

also scrutinize the time variation of each predictor variable’s importance. This approach can reveal whether 

1) some predictors are uninformative during the entire sample period, 2) they lead to a permanent deterio-

ration in a forecast’s signal-to-noise ratio, and 3) they can be removed from the set of baseline variables. 

Fourth, we apply a conservative transaction cost model to investigate whether the value-added of active 

trading strategies remains promising under realistic trading assumptions. 

Finally, we challenge the traditional formation process of expected return-sorted portfolios, which 

uses some statistical prediction model to estimate expected returns first, and select stocks with the highest 

expected return forecasts into decile portfolios second. The underlying assumption is that stocks with high 

expected returns ex ante will deliver high realized returns ex post. Rather than taking a “detour” to estimate 

stock-level expected returns, we take an alternative approach here. In particular, we use a support vector 

machine to directly classify stocks into decile portfolios based on linear combinations of predictor variables. 

In our empirical analysis, we enhance the set of twenty-two predictors from Drobetz et al. (2019) by 

two-way interactions as well as second- and third-order polynomials to capture nonlinearity. Overall, we 

find that interactions and nonlinear effects help improve predictive performance. However, machine learn-

ing models must be adequately trained and tuned to avoid overfitting. 

Overfitting can manifest along two different strands: model overfitting and backtest overfitting. 

Model overfitting refers to machine learning models with overly high in-sample fit but poor out-of-sample 

predictive performance. To avoid model overfitting, we control for the degree of model complexity by 

tuning relevant hyperparameters. These parameters cannot be pre-set, but must be determined adaptively 

from the sample data. The parameter tuning approach iteratively reduces in-sample fit by searching for the 

degree of model complexity that will produce reliable out-of-sample predictive performance. 

Backtest overfitting refers to a researcher’s arbitrariness in choosing firm coverage and sample pe-

riod, predictors, and tuning parameters. If information from the out-of-sample period are used to fit the 
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models, consciously or not (Schorfheide and Wolpin, 2012), this might lead to overstated out-of-sample 

predictive performance (Bailey et al., 2014, 2017; Harvey and Liu, 2014, 2015; Harvey, Liu, and Zhu, 

2016). To avoid backtest overfitting, we include all firms that were or are publicly listed in one of the 

nineteen Eurozone countries as of December 2020. We omit only firm observations with a market capital-

ization lower than €25 mill. or missing values for excess returns or for at least one of the twenty-two firm 

characteristics used as predictors. According to Gu, Kelly, and Xiu (2020), using large datasets mitigates 

sample selection or data snooping biases (Lo and MacKinlay, 1990), and also can help avoid model over-

fitting by increasing the ratio of observation count to parameter count. In line with Drobetz et al. (2019), 

we use a set of twenty-two firm-level predictors that are commonly used in the asset pricing literature 

(Chordia, Goyal, and Saretto, 2017; Harvey, Liu, and Zhu, 2016; Lewellen, 2015; McLean and Pontiff, 

2016). We refrain from focusing on only a small subset of covariates that have been shown to perform best 

in similar prediction tasks. Finally, we opt for the time series cross-validation approach to fit our machine 

learning models. It maintains the temporal ordering of the data, and splits the sample into three distinct 

subsamples: a training sample, a validation sample, and a test sample (which is used for neither model 

estimation nor parameter tuning, and thus is truly out-of-sample).2 

We observe that each forecast model’s degree of complexity varies substantially over time, but they 

all denote similar predictors as important. The most influential predictors are based on recent price trends, 

e.g., short-term reversal and stock momentum, and fundamental signals from valuation ratios, e.g., earn-

ings-to-price and book-to-market ratios. Despite these commonalities, our forecast models exhibit differ-

ences in statistical performance (as indicated by predictive slopes, predictive 𝑅2 metrics, and Diebold-

Mariano (1995) test statistics), which also translate into marked differences in economic profitability. The 

return and risk measures of long-only investment strategies, i.e., sorting stocks into decile portfolios based 

on expected return estimates and buying the top decile portfolio, indicate that machine learning methods 

produce predictive gains. These gains are attributable to predictor interactions and to nonlinear effects that 

                                                 
2 The hyperparameters are selected from a comprehensive set of parameter specifications (see Appendix A, Table A1), 

following common parameter choices in the literature. We cover a representative range of possible parameter speci-

fications, which can help mitigate the risk of backtest overfitting. 
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is overlooked by the linear benchmark model. We find that neural networks perform best overall, also after 

accounting for transaction costs. 

Finally, we compare the performance of traditional expected return-based portfolio formation with a 

classification-based approach. In particular, we contrast neural networks (which outperform all other tradi-

tional approaches in our empirical analysis) with support vector machines (SVMs). The idea behind SVMs 

is to search for hyperplanes that territorially divide a multidimensional vector space (our sample of firm 

observations, consisting of stock-level predictors and decile portfolio labels) into groups of vectors that 

belong to the same class. This allows for the classification of stocks into decile portfolios without taking a 

“detour” to predict stock-level expected returns. We find that the classification-based approach is superior 

to even the best-performing expected return-based portfolio formation because it avoids some of the noise 

in stock-level returns. However, it is able to maintain the broad return signal, which is most important for 

our trading strategy, i.e., the correct classification into a decile portfolio. 

The remainder of this paper is organized as follows: Section 2 briefly reviews the literature on stock 

return prediction and machine learning. Section 3 describes our dataset. Section 4 summarizes the different 

machine learning methods and tuning parameters, while Section 5 compares their predictive performance. 

We contrast the traditional formation process of expected return-sorted portfolios with an alternative ap-

proach using classification-based portfolios in Section 6. Section 7 concludes. 

2. Literature review 

Several prior studies are closely related to our paper. Haugen and Baker (1996), Lewellen (2015), 

and Drobetz et al. (2019) examine composite estimates of expected returns obtained from cross-sectional 

FM regressions. They present comprehensive evidence that the simultaneous incorporation of multiple firm 

characteristics as predictors provides strong out-of-sample predictive power for subsequent stock returns. 

They also challenge the efficient markets hypothesis by concluding that stocks with higher expected (and 

realized) returns are not riskier than their low-return counterparts. In turn, they show that stock return pre-

dictions can be used to implement a profitable investment strategy. 
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Research on machine learning methods in the asset pricing literature is still scant, and different fore-

cast approaches are usually examined separately. Most studies compare different specifications from the 

same model family, e.g., approaches that conduct variable selection/shrinkage or dimension reduction, tree-

based models, and neural networks. For example, Kozak, Nagel, and Santosh (2020) use the joint explana-

tory power of a large set of cross-sectional stock return predictors to form a robust stochastic discount factor 

that contrasts the lasso and ridge penalizations. 

Freyberger, Neuhierl, and Weber (2020) and Rapach, Strauss, and Zhou (2013) also use the lasso 

framework. The former applies a non-parametric adaptive group lasso version to explore which character-

istics add incremental predictive power for the cross-section of expected returns. The latter considers coun-

try-level stock returns to examine lead‐lag relationships. Giglio and Xiu (2021) focus on a dimension re-

duction path. They apply a principal component analysis (PCA) method to estimate the risk premiums of 

factors that are potentially omitted in asset pricing models due to missing or limited observability. Kelly, 

Pruitt, and Su (2019) introduce an instrumentalized version of a PCA to re-estimate common equity factors. 

Incorporating tree-based architectures, Coqueret and Guida (2018) use single regression trees to estimate 

the association of firm characteristics and subsequent stock returns. Both Leung et al. (2020) and Moritz 

and Zimmermann (2016) apply ensemble versions that avoid overfitting to study how common equity fac-

tors and lagged stock returns predict future stock returns. 

Several studies apply neural networks in various specifications, most commonly feedforward multi-

layer architectures. For example, Levin (1995) and Messmer (2017) examine the predictive power of firm 

characteristics on subsequent stock returns, while Heaton, Polson, and Witte (2016) assess the applicability 

of deep learning approaches for multiple regression and classification problems in finance. Chen, Pelger, 

and Zhu (2019) and Gu, Kelly, and Xiu (2021) consider other architectures, such as recurrent long short-

term memory (LSTM) networks, generative adversarial networks (GAN), and autoencoder networks. 

Rasekhschaffe and Jones (2019), Wolff and Neugebauer (2019), and Gu, Kelly, and Xiu (2020) provide a 

comparison of different forecast models. 
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Finally, Leung, Daouk, and Chen (2000) focus on the sign rather than the level of stock returns. They 

apply classification-based methods (including linear discriminant analysis, logit, and probit) to predict the 

direction of stock market movements. Similarly, Huerta, Corbacho, and Elkan (2013) train an SVM to 

classify stocks into future out- and underperformers. 

3. Data 

The market and fundamental data for European firms come from Thomson Reuters Datastream. Our 

sample is free of survivorship bias, and includes all firms that were or are publicly listed in one of the 

nineteen Eurozone countries as of December 2020.3 We collect all data on a monthly basis, and, if currency-

related, denominated in Euro. We only include firm observations that provide full information on excess 

returns and all twenty-two firm characteristics used in the empirical analysis (no missing values). In every 

month, we require at least fifty firms with a minimum market capitalization of €25 mill. that meet this full 

information criterion. This shrinks our sample period to January 1990-December 2020. To calculate excess 

returns, we use the three-month EURIBOR rate, scaled to the one-month horizon, as the risk-free rate. 

We use twenty-two firm-level predictors that are commonly used in the asset pricing literature (Chor-

dia, Goyal, and Saretto, 2017; Harvey, Liu, and Zhu, 2016; Lewellen, 2015; McLean and Pontiff, 2016). 

These variables have been shown to explain most of the cross-sectional variation in expected returns. We 

also consider two-way interactions between firm characteristics as predictors as well as second- and third-

order polynomials of firm characteristics to cover nonlinearity. Variables and models are defined below. 

We assume that market data become public immediately, while fundamental data are known four months 

after the fiscal year-end. Table 1 gives the definitions of the twenty-two predictors that serve as our starting 

point for the creation of an extended set of covariates. 

[Insert Table 1 here] 

                                                 
3 The countries in the Eurozone are: Austria, Belgium, Cyprus, Estonia, Finland, France, Germany, Greece, Ireland, 

Italy, Latvia, Lithuania, Luxembourg, Malta, The Netherlands, Portugal, Slovakia, Slovenia, and Spain. 
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We follow Drobetz et al. (2019) in constructing our twenty-two variables, who note two important 

caveats: First, most characteristics represent level variables that change slowly (like size) or flow variables 

that are measured over at least one year (like book equity). This translates into high persistence over time, 

which in turn suggests that any predictability in monthly excess returns is likely to extend to longer horizons 

(Campbell and Cochrane, 1999; Cochrane, 2008). Second, many of the characteristics are constructed sim-

ilarly, i.e., issuance metrics, or incorporate similar firm information, i.e., profitability measures, which leads 

to high correlations. According to Lewellen (2015), the resulting multicollinearity is not of concern in the 

empirical analysis. This is because we are mostly interested in the overall predictive power of the respective 

machine learning models, rather than the marginal effects of each single predictor. Machine learning models 

are suitable for solving the multicollinearity problem by selecting/shrinking variables, etc., and could thus 

add incremental predictive power. 

We adjust our initial sample in two steps: First, we winsorize all monthly firm characteristics at the 

1% and 99% levels to correct for outliers. In contrast to Gu, Kelly, and Xiu (2020), we also winsorize 

excess returns.4 Second, we rank all firm characteristics month-by-month cross-sectionally, and then map 

the ranks into the (−1, +1) interval, following Kelly, Pruitt, and Su (2019) and Freyberger, Neuhierl, and 

Weber (2020). 

Table 1 also reports the time series averages of monthly cross-sectional means and standard devia-

tions for excess returns and the twenty-two characteristics as well as the overall sample size. The average 

universe of stocks covers 832 firms with non-missing observations, ranging from 56 in January 1990 to 

1,012 in December 2020. The average excess return is 0.51%, with a standard deviation of 4.55%. The first 

and second moments of all predictor variables are similar to those found in earlier studies (Lewellen, 2015; 

Drobetz et al., 2019). 

                                                 
4 Gu, Kelly, and Xiu (2020) apply a Huber loss function to all least squares-based forecast models to ensure stable 

forecasts in the presence of extreme observations. However, if the Huber loss is not applicable (such as in PCR or 

PLS models) this approach undermines the different models’ comparability. Winsorizing excess returns avoids 

differences in predictive power that are driven by differences in the underlying objective function. However, when we 

do not winsorize excess returns, the results remain qualitatively the same throughout our empirical analysis. 
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4. Machine learning methods 

For our empirical analysis, our benchmark is the modified linear FM regressions approach used in 

Drobetz et al. (2019). Our main objective is to examine whether incorporating interactions and nonlinearity 

adds incremental predictive power. Therefore, we compare the predictive performance of different machine 

learning methods from both a statistical and an economic perspective. As in Gu, Kelly, and Xiu (2020), we 

apply an additive prediction error model to describe a stock’s excess return, i.e., 𝑟𝑖,𝑡+1 = 𝐸𝑡(𝑟𝑖,𝑡+1) + 𝑒𝑖,𝑡+1, 

where 𝑟𝑖,𝑡+1 is the excess return of stock 𝑖 = 1, … , 𝑁𝑡 in month 𝑡 = 1, … , 𝑇. The expected excess return is 

estimated as a function of predictor variables, and described by the “true” model 𝑔∗(𝑧𝑖,𝑡), where 𝑧𝑖,𝑡 repre-

sents the P-dimensional set of predictors, i.e., 𝐸𝑡(𝑟𝑖,𝑡+1) = 𝑔∗(𝑧𝑖,𝑡). Albeit our forecast models belong to 

different families, they are all designed to approximate the true forecast model by minimizing the out-of-

sample mean squared forecast error (MSFE), i.e., 𝑀𝑆𝐹𝐸𝑡+1 =
1

𝑁𝑡+1
∑ (𝑒̂𝑖,𝑡+1)2𝑁𝑡+1

𝑖=1 . 𝑒̂𝑖,𝑡+1 is the individual 

error for stock 𝑖 stemming from forecast model 𝑘, and 𝑁𝑡+1 is the number of stocks within the respective 

month 𝑡 + 1. Approximations of conditional expectations 𝑔∗(𝑧𝑖,𝑡) are flexible and family-specific. Ap-

proximation functions 𝑔(. ) can be linear or nonlinear, as well as parametric, 𝑔(𝑧𝑖,𝑡, 𝜃), where 𝜃 is the set 

of true parameters, or non-parametric 𝑔(𝑧𝑖,𝑡).5 

Before presenting the results of our empirical analysis, we now briefly introduce the sample-splitting 

scheme used to fit the forecast models. We then discuss each machine learning method and its key tuning 

parameters (see Appendix A, Table A1 for details).6 

4.1. Sample splitting 

Machine learning methods can help overcome the high dimensionality issue, which arises when the 

number of predictors becomes very large relative to the number of observations. They can also help solve 

                                                 
5 In accordance with Gu, Kelly, and Xiu (2020), we make the following assumptions: 𝑔(. ) and 𝑔∗(. ) predict expected 

returns independently of any information prior to 𝑡 or information from other stocks at 𝑡. 𝑔(. ) and 𝑔∗(. ) differ between 

the different forecast models, but they are identical across all stocks and over time within each model family. This 

leads to more stable estimates of expected excess returns. 
6 We present the forecast models from an intuitive perspective. For more details on the specific implementation choices 

of each machine learning algorithm, see Gu, Kelly, and Xiu (2020). 
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the problem of multicollinearity, which can occur when predictor variables are highly correlated. However, 

they are prone to overfitting, so we must control for the degree of model complexity by tuning the relevant 

hyperparameters. Examples for tuning parameters are the number and/or depth of trees in boosted regres-

sion trees or random forests. To avoid overfitting and maximize out-of-sample predictive power, hyperpa-

rameters cannot be pre-set, but must be determined adaptively from the sample data. In particular, they are 

selected from a comprehensive set of parameter specifications (see Appendix A, Table A1 for details). The 

parameter tuning approach iteratively reduces in-sample fit by searching for the degree of model complexity 

that will produce reliable out-of-sample predictive performance. To this end, it uses the time series cross-

validation approach, which maintains the temporal ordering of the data, and splits the sample into three 

distinct subsamples: a training sample, a validation sample, and a test sample. 

The training sample is used to estimate the model for multiple parameter specifications, while the 

validation sample is used to tune the parameters. Based on the models estimated from the training sample, 

the MSFE within the validation sample is then calculated for each parameter specification. Next, the spec-

ification that minimizes the MSFE is applied in order to re-estimate the model from the training sample. 

Note that, because the tuning parameters for the re-estimation are chosen from the validation sample, it is 

not truly out-of-sample. The test sample is used for neither model estimation nor parameter tuning. This is 

why it is truly out-of-sample, and appropriate for evaluating a model’s out-of-sample predictive power. 

In an asset management context, where new data emerge over time, a sample-splitting scheme that 

periodically includes more recent data must be applied (see, e.g., West, 2006, for an overview). This is why 

the “rolling window” and “recursive window” methods gradually shift the training and validation samples 

forward in time. The former method holds the length of training and validation samples constant; the latter 

increases them progressively. Moreover, because the recursive window approach always incorporates the 

entire history of data, it is computationally more intensive than the rolling window approach. 

Because of this, and because machine learning algorithms are also generally computationally inten-

sive, Gu, Kelly, and Xiu (2020) use a hybrid of the rolling and recursive approaches. They avoid recursively 
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refitting models each month. Instead, they refit once every year, as most of the fundamental firm charac-

teristics are updated annually. Each time, they increase the training sample by one year, while holding the 

length of the validation sample constant but rolling it forward one year. To maintain comparability with 

Drobetz et al. (2019), we choose the rolling window approach in our analyses. Instead of annually increas-

ing the training sample, we also hold the length of the training sample constant, and we roll it forward from 

year to year. In our empirical analysis, we always select eight years for training, two years for validation, 

and one year for testing from the data.7 

4.2. Forecast models 

We use two nested sets of predictors. The parsimonious set covers the twenty-two baseline predictors 

used by Drobetz et al. (2019), enhanced by forty-four dummies that correspond to the ISO country codes 

and the first two digits of Standard Industrial Classification (SIC) codes. This set includes 22 + 44 = 66 

covariates. The full set adds two-way interactions between the twenty-two baseline predictors as well as 

second- and third-order polynomials. In total, it includes 22 +
22×21

2
+ 22 + 22 + 44 = 341 covariates. 

While all forecast models aim to minimize the MSFE, they differ in their overall approach and com-

plexity. Therefore, we outline the major differences among the model families. We begin with simple linear 

regression models, continue with models that perform variable selection/shrinkage or dimension reduction, 

and finish with other sophisticated machine learning methods. Furthermore, for each method, we visually 

examine how the expected return estimates change as we vary the values of a single predictor or a pair of 

predictors simultaneously within the (−1, +1) interval. We hold all other predictors fixed at their unin-

formative median value of zero. The visualizations (unreported) confirm that the models that are designed 

to incorporate interactions and nonlinearity indeed capture these effects. 

                                                 
7 The first models are estimated for training and validation from ten years of data (1990:01-1997:12 and 1998:01-

1999:12, respectively). Therefore, twenty-one years of data (2000:01-2020:12) remain for testing. 
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4.2.1. Ordinary least squares 

The ordinary least squares (OLS) regression models are the least complex in our empirical analysis. 

They aim to minimize the standard “𝑙2” objective function, i.e., 𝑙(𝜃) =
1

𝑁𝑇
∑ ∑ (𝑟𝑖,𝑡+1 − 𝑔(𝑧𝑖,𝑡; 𝜃))

2
𝑇
𝑡=1

𝑁
𝑖=1 . 

We further distinguish between two similar but different model specifications. The first is denoted as 

“ols_pars”, and regresses monthly excess returns on the parsimonious set of sixty-six predictors. Using a 

similar or identical set of covariates, Lewellen (2015) and Drobetz et al. (2019) document that this approach 

is promising, both from a statistical and an economic perspective. Although they use the FM regressions 

model that is re-estimated on a monthly basis, our ols_pars model provides nearly identical predictions in 

our sample-splitting and re-estimation setting. 

In particular, we replicate the linear FM regression approach implemented in Drobetz et al. (2019) 

for our sample, and compare the expected excess return series. We find a Pearson correlation coefficient 

close to 1, which can be explained by the rolling window sample splitting with annual re-estimation. In this 

case, running cross-sectional FM regressions on a monthly basis and averaging coefficients recursively (as 

in Lewellen, 2015, or Drobetz et al., 2019) is very similar to running a pooled OLS regression based on a 

rolling training sample (as in our analysis). 

To ensure comparability with our machine learning models that cannot be re-estimated on a monthly 

basis (due to computational limitations), we apply the ols_pars model as a proxy for the FM regressions 

approach and our main benchmark. It has performed well, and can thus serve as a conservative threshold 

for indicating incremental predictive performance. However, the ols_pars model cannot capture interactions 

or nonlinearity that may add predictive power. 

This is why the second model specification is denoted as “ols_full”, and regresses monthly excess 

returns on the full set of 341 predictors. Because we now face a high-dimensional optimization problem, 

we expect the ols_full model to perform worse than the ols_pars model. It incorporates predictors that may 

be highly correlated and possess a very low signal-to-noise ratio. When the number of predictors approaches 

the number of observations, the unrestricted OLS approach begins overfitting noise rather than extracting 
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signal. This activity worsens in a low-signal-to-noise environment. In this case, the ols_full model is ex-

pected to become inefficient or even inconsistent. 

We use this model specification as a subordinate benchmark in order to emphasize how well sophis-

ticated forecast models can identify and incorporate relevant predictors to improve predictive performance, 

and to determine which firm characteristics, interactions, and nonlinear effects matter. To overcome the 

overfitting problem of highly parameterized OLS models, and reduce the number of predictors, machine 

learning algorithms impose variable selection/shrinkage, dimension reduction, and other adjustments. 

As already explained, we restrict our sample to firms with a minimum market capitalization of €25 

mill. Nevertheless, our results still tend to be dominated by the large number of smaller firms. This is in 

line with Fama and French (2008), who find that the smallest 20% of stocks comprise only three percent of 

aggregate market capitalization. These smallest firms are often economically inconsequential to large in-

stitutional investors, i.e., such market participants cannot invest enough money as passive shareholders, or 

face high transaction costs for large trades. To find a balance between the large number of small firms, and 

the small number of very large firms, Grinold and Kahn (2000) propose a generalized least squares (GLS) 

regression setting. In particular, they suggest to weight each observation by the inverse of its estimated 

error variance, which they proxy by the square root of its market capitalization. Gu, Kelly, and Xiu (2020) 

also suggest this adjustment potentially to improve prediction efficiency. Therefore, in a robustness test 

(unreported), we apply a weighted least squares loss function for both the ols_pars and ols_full model 

specifications to achieve more robust predictions. We use weights that are proportional to the square root 

of stock 𝑖’s market capitalization at time 𝑡. However, because we do not observe improvements in predictive 

performance relative to the two OLS-based models, we use the simpler ols_pars and ols_full models as our 

benchmarks, emphasizing that they are more conservative representatives for this forecast model family. 

4.2.2. Penalized least squares 

The most common machine learning tool to achieve variable selection/shrinkage in a high-dimen-

sional regression setting is the penalized least squares approach. In particular, it identifies which predictors 

are informative, and omits those that are not. This approach modifies the least squares loss function by 
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adding a penalty term, denoted as Φ(𝜃), to prefer more parsimonious model specifications, i.e., 𝑙(𝜃) =

1

𝑁𝑇
∑ ∑ (𝑟𝑖,𝑡+1 − 𝑔(𝑧𝑖,𝑡; 𝜃))

2
𝑇
𝑡=1

𝑁
𝑖=1 + Φ(𝜃). 

There are two common types of penalties: First, the lasso approach penalizes the sum of absolute 

coefficients, thereby setting regression coefficients to a subset of predictors to exactly zero (variable selec-

tion). Second, the ridge approach penalizes the sum of squared regression coefficients, thereby only pushing 

coefficients close to zero (variable shrinkage). We follow the elastic net (elanet) approach, which combines 

the lasso and ridge methodologies.8 It computes the weighted sum of both penalties to increase flexibility, 

i.e., Φ(𝜃) = 𝜆(1 − 𝑝) ∑ |𝜃𝑗|𝑃
𝑗=1 + 𝜆𝑝 ∑ (𝜃𝑗)

2𝑃
𝑗=1 . Tuning parameters in this forecast model are 𝜆 ∈ (0,1) 

and 𝑝 ∈ (0,1). Moreover, 𝜆 indicates the general strength of the penalty (in particular, how strongly the 

regression coefficients are forced to zero); 𝑝 indicates the weight on the lasso and ridge approach; 𝑝 = 0 

corresponds to lasso; and 𝑝 = 1 corresponds to ridge. 

4.2.3. Principal components regressions and partial least squares 

Although the elanet approach is capable of reducing a highly parameterized model’s complexity by 

forcing coefficients close to or exactly to zero, it might perform badly if predictors are highly correlated. 

In this case, where predictors face low signal-to-noise ratios, a superior approach is to create new, de-

correlated predictors as linear combinations of highly correlated variables (e.g., by averaging their values) 

instead of just omitting some. This reduces noise, and thus increases the signal-to-noise ratio. 

The basic concept of dimension reduction is variable averaging, as opposed to variable selection or 

shrinkage. Two common methods are principal component regression (pcr) and partial least squares (pls). 

Both follow a two-step procedure: First, the models conduct dimension reduction by creating new, de-

correlated predictors (so-called “components”). Second, they identify the optimal number of components 

and then use them in a standard predictive regression model to estimate expected excess returns. The pcr 

approach forms principal components by incorporating the covariance matrix of the predictors. However, 

                                                 
8 We also test the lasso and ridge approaches separately. We find no improvement in predictive performance relative 

to the elastic net approach, so we do not present the results for these penalty functions here. 
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during the dimension reduction step, it does not take into account how the predictors relate to subsequent 

excess returns, which of course, is our main objective. 

To overcome this deficiency, the pls approach keeps the forecast objective in mind, even during the 

dimension reduction step. To form the first component, it runs a univariate OLS regression of realized 

excess returns on each predictor separately. We can consider the resulting coefficients as reflecting “partial” 

sensitivity of the realized excess returns to each predictor. It then computes the weighted average of all 

predictors, using weights proportional to the absolute value of each coefficient. Higher weights are assigned 

to stronger univariate predictors (higher absolute value), and vice versa. 

To form further components, during each repetition, the realized excess return and the predictors are 

orthogonalized with respect to previously formed component(s). The tuning parameter in both forecast 

models is the number of components (𝑛𝑢𝑚𝑏𝑒𝑟𝑐𝑜𝑚𝑝) included in the predictive regression. Using only a 

certain number of components can be considered equivalent to setting the coefficients for the other compo-

nents (with low signal-to-noise ratio) to exactly zero. 

4.2.4. Random forests and gradient boosted regression trees  

Regression trees incorporate multi-way interactions and nonlinearity inherently, without having to 

add these effects as new predictors. The idea behind regression trees is that they adaptively split the dataset 

into groups of observations that behave in a similar manner. They follow an iteration process that is inspired 

by the growing behavior of real trees in nature: First, the process begins with one initial node, the root, in 

order to find the optimal split variable and the optimal split value by minimizing the MSFE within each 

partition. This results in two nodes with minimized impurity. Second, to further disentangle the dataset, it 

determines optimal split variables and values on the subsamples left over from the preceding step(s) to 

iteratively grow the regression tree. This results in multiple final nodes with minimized impurity, the leaves. 

The predicted excess return for each leaf reflects the simple average of the realized excess returns of firms 

into which it is sorted. Regression trees are invariant to monotonic transformations of predictors, able to 

incorporate categorical and numerical data in the same forecast models, and designed to capture interactions 

and nonlinearity. However, they are prone to overfitting and must be strongly regularized. To accomplish 
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this, the ensemble forecast approach aggregates forecasts from many different regression trees into a single 

one. According to Gu, Kelly, and Xiu (2020), there are two common methods: bagging, and boosting. 

Random forests (rf) modify Breiman’s (2001) traditional bagging approach. The idea is to draw mul-

tiple bootstrap samples of the original dataset, fit deep trees independently, and then average their predic-

tions into an ensemble forecast, creating a single strong learner. Because dominant predictors are always 

more likely to become split variables at low levels, which can lead to correlations between bootstrap-repli-

cated trees, random forests apply the so-called “dropout” method. At each potential branch, they randomly 

drop out predictors, leaving only a subsample of predictors to be selected as potential split variables. The 

tuning parameters in this forecast model are the depth of trees 𝐿, the number of predictors 𝑀 randomly 

considered as potential split variables, and the number of trees 𝐵 added to the ensemble prediction. 

In contrast, gradient boosted regression trees (gbrt) follow the boosting approach, which is based on 

the idea that combining multiple shallow trees creates a single strong learner, stronger even than a single 

deep tree. The iterative procedure is as follows: The gbrt approach computes a first shallow tree to fit the 

realized excess returns. This oversimplified tree exhibits a high forecast error. Next, it computes a second 

shallow tree, fitting the forecast residuals from the first tree. The forecasts from these two trees are then 

added together to form an ensemble prediction. The forecast component from the second tree is shrunk by 

a factor 𝜈 𝜖 (0,1) to avoid overfitting the forecast residuals. Each additional shallow tree is fitted to the 

forecast residual from the preceding ensemble prediction, and its shrunk forecast component is added ac-

cordingly to the ensemble forecast. The tuning parameters in this forecast model are the depth of the trees 

𝐿, the shrinkage weight 𝜈, and the number of trees 𝐵 added to the ensemble prediction. 

4.2.5. Neural networks 

Neural networks (nn) are the most complex method in our empirical analysis. They are highly pa-

rameterized, which makes them suitable for solving highly complicated machine learning problems. But 

they are opaque and can be difficult to interpret. In general, they map inputs (predictors) to outputs (realized 

excess returns). Inspired by the functioning of the human brain, they are composed of many interconnected 

computational units, called “neurons”. Each neuron on its own provides very little predictive power, but a 
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network of multiple neurons functions cohesively and improves predictive performance. We use feedfor-

ward neural networks, where each node is connected to all the nodes in the previous layer and the connec-

tions follow a one-way direction, from input to output layer. The input layer contains the predictor variables 

(e.g., lagged firm characteristics), while the output layer contains the dependent variable (realized excess 

returns). The simplest neural network (without any hidden layer) equals the OLS regression model. Adding 

hidden layers leads from shallow to deep architectures, able to capture interactions and nonlinear effects 

(see Appendix B, Figure B1, Panel A). 

Neural networks predict output 𝑦 as the weighted average of inputs 𝑥. In the simplest model, the OLS 

regression coefficients are taken as weights. In more complex architectures, the weights must be computed 

iteratively by using the “backpropagation” algorithm. As an initialization, this algorithm assigns random 

weights to each connection. It also calculates the initial MSFE based on the predictions derived from the 

inputs of the (last) hidden layer. It then proceeds iteratively as follows: First, it recursively (from output to 

input layer) computes the gradient of the MSFE with regard to the weights. Second, it adjusts the weights 

slightly in the opposite direction of the computed gradients, because the objective is to minimize the MSFE. 

Third, based on the adjusted weights, it re-calculates the MSFE. 

The iteration process, known as “gradient descent”, stops when the MSFE is ultimately minimized. 

Thus far, it is assumed that each node in the hidden layer creates a signal (e.g., it is incorporated into the 

computation of the weighted average). In the human brain, however, neural networks work somewhat dif-

ferently. To avoid noise, a specific node transforms each of the preceding signals it transmits (if at all). For 

example, it may amplify or condense the preceding signals, or only creates a signal if the accumulated 

information is sufficient. At each node, the weighted average of the preceding signals (either from the input 

or the preceding layer) is used as input 𝑥 in an activation function (see Appendix B, Figure B1, Panel B). 

Following Gu, Kelly, and Xiu (2020), we choose the rectified linear unit (ReLU) function and apply it to 

each node in the hidden layers. To encourage sparsity in the number of active neurons, it only provides a 

signal as an output if the information from the preceding layer accumulates beyond a certain threshold, i.e., 

𝑅𝑒𝐿𝑈(𝑥) = {
0 𝑖𝑓 𝑥 < 0

    𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 
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In our analysis, we consider neural networks with up to five hidden layers (𝐻𝐿) and up to thirty-two 

neurons (𝑁), which we choose according to the geometric pyramid rule (Masters, 1993).9 In addition to a 

ReLU activation and a lasso-based penalization of the weights, we simultaneously apply other types of 

regularizations to ensure computational feasibility and avoid overfitting (Gu, Kelly, and Xiu, 2020). 

First, we use the stochastic gradient descent (SGD) approach to train the neural networks. During 

the iteration process, the algorithm cuts the training sample into small random subsamples, so-called 

“batches”, and uses one at each iteration. This leads to strong improvements in computational speed. The 

algorithm still sees the entire training sample (consecutively, not contemporaneously, and at least once but 

usually multiple times), which helps incorporate all available information and avoids impairing predictive 

performance. Consequently, the number of iterations depends on the size of the batches and the number of 

epochs (i.e., the number of times the algorithm sees the entire training sample). 

Second, we adopt the batch normalization algorithm introduced by Ioffe and Szegedy (2015). It mit-

igates the internal covariate shift that occurs as the distribution of each hidden layer’s inputs changes during 

the training (as the parameters of the preceding layers change) and slows down the learning process. To 

this end, within each batch, it cross-sectionally normalizes the input to each hidden layer. 

Third, we apply learning rate shrinkage (see Appendix B, Figure B1, Panel C). The learning rate 

determines the size of the incremental steps in the gradient, while iteratively minimizing the MSFE. It faces 

a trade-off between finding the global minimum instead of the local counterpart (smaller learning rate) and 

computational speed (larger learning rate). This regularization procedure begins with a larger learning rate 

to speed up computation. As the gradient approaches zero, it shrinks the learning rate toward zero to over-

come a potential local minimum. 

Fourth, we implement early stopping (see Appendix B, Figure B1, Panel D), as neural networks aim 

to minimize the MSFE in the training sample. This regularization terminates the SGD iteration process 

                                                 
9 The neural network architectures are: nn_1 (𝐻𝐿 = 1; 𝑁 = {32}), nn_2 (𝐻𝐿 = 2; 𝑁 = {32,16}), nn_3 (𝐻𝐿 = 3; 𝑁 =
{32,16,8}), nn_4 (𝐻𝐿 = 4; 𝑁 = {32,16,8,4}), and nn_5 (𝐻𝐿 = 5; 𝑁 = {32,16,8,4,2}). 
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when the MSFE in the validation sample increases for a pre-specified number of iterations (so-called “pa-

tience”), which also speeds up computation. 

Fifth, we adopt the ensemble approach proposed by Hansen and Salamon (1990) and Dietterich 

(2000). We compute ten neural networks from the same specification family at each re-estimation date, 

using independent seeds.10 We then average over the predictions to increase the signal-to-noise ratio, since 

the stochastic nature of the SGD approach leads to different forecasts for different seeds. 

Lastly, in addition to the regularization applied by Gu, Kelly, and Xiu (2020), we employ the dropout 

method (similar to that applied for regression trees). It randomly sets a fraction rate of input variables to 

exactly zero at each iteration, and thus is one of the most effective methods in the neural network framework 

to prevent overfitting. 

Neural networks are computationally intensive and can be specified in an innumerable amount of 

different architectures. This is why we retreat from tuning parameters (e.g., the size of batches or the num-

ber of epochs) and instead pre-specify five different models. We assume that our nn_1 to nn_5 architectures 

serve a conservative lower bound for the predictive performance of neural network models in general. 

5. Empirical results 

5.1. In-sample tests 

5.1.1. Model complexity 

Since we re-estimate each forecast model on an annual basis, it is interesting to gauge whether model 

complexity changes over time or rather remains stable. We only consider models that can actually exhibit 

time-varying model complexity in our setting (elastic net, pcr, pls, rf, and gbrt). These models pertain to 

different families, so there is no uniform model complexity measure. For the elanet approach, which per-

forms variable selection/shrinkage, we use the number of non-zero regression coefficients. The pcr and pls 

approaches conduct dimension reduction, so we consider the optimal number of components included in 

the predictive regression. But, because the rf and gbrt approaches are non-parametric and tree-based, we 

                                                 
10 Seeds are numbers used to initialize random processes. This approach ensures different but reproducible predictions. 
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take the optimal depth (for rf) and the number of unique split variables (for gbrt) of the trees to measure 

model complexity.11 

Figure 1 presents the model complexity of each forecast model at each re-estimation date. In line 

with the results from Gu, Kelly, and Xiu (2020), we observe that each model’s complexity varies substan-

tially over time. The time-varying behaviour of different approaches within the same forecast model family 

(namely pcr/pls and rf/gbrt) is similar with regard to low- and high-complexity periods. 

[Insert Figure 1 here] 

5.1.2. Variable importance 

Next, because the different forecast models behave similarly in terms of model complexity (at least 

within each model family), it is instructive to explore whether the different approaches denote different 

predictors as most relevant for estimating subsequent excess returns. To this end, we calculate each model’s 

variable importance matrix based on a two-step approach, separately for each re-estimation date: First, we 

compute the absolute variable importance as the reduction in R2 from setting all values of a given predictor 

to zero within the training sample.12 Second, we normalize absolute variable importance measures to sum 

to 1, signaling the relative contribution of each variable to a model. Figure 2 depicts the time series average 

of relative variable importance measures for each forecast model separately. We find that, on average, the 

various forecast models denote similar variables as the most informative (e.g., earningstoprice or 

ret_2_12). However, some models focus on a highly concentrated set of predictors. For example, tree-based 

models (rf and gbrt) put most of their weights on only a few variables, whereas the dimension-reducing 

approaches (pcr and pls) consider a much larger range of predictors to be important. 

[Insert Figure 2 here] 

                                                 
11 Neural networks can exhibit time-varying model complexity. Because we pre-specify the architectures, and only 

present the results for five specifications (nn_1-nn_5), we do not allow for time variation in model complexity. 
12 In contrast with Gu, Kelly, and Xiu (2020), we not only set the value of the specific predictor itself to zero, but we 

also set each interaction or nonlinearity term that contains information from the respective variable to zero. We assume 

that each respective predictor is completely, not only partly, uninformative, which allows for more realistic variable 

importance metrics. 
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To enhance between-models comparability, we rank the average relative contribution of each varia-

ble within a specific model, and sum the ranks across all models to obtain an overall rank (higher variable 

importance = higher rank). Figure 3 presents a heat map of the relative variable importance ranks. The rows 

are sorted in descending order based on overall rank. Therefore, the higher a variable is placed, the more 

important it is overall. Darker cell colours denote greater importance for the respective variable to the 

model. Again, we find commonalities across relative variable importance metrics, which are even more 

pronounced within the same forecast model family. For example, both tree-based methods (rf and gbrt) find 

issues_1_12 strongly informative, while all other forecast models assume this particular predictor is rela-

tively unimportant. 

[Insert Figure 3 here] 

Finally, we determine whether the relative importance of different variables within a specific model 

changes over time or rather remains stable. Volatile metrics would indicate that all covariates in the predic-

tor sets are essential; stable figures would suggest removing uninformative predictors permanently, as they 

can degrade a forecast’s signal-to-noise ratio. To identify predictors’ time variability in relative importance 

measures, we rank the relative contribution of each variable within a specific model at each re-estimation 

date (higher variable importance = higher rank). The trends are similar for all forecast models. Therefore, 

for the sake of brevity, we only present and discuss the results for our benchmark model (ols_pars). Figure 

4 shows the relative variable importance ranks of the ols_pars model at each re-estimation date. Although 

a few variables tend to stay close to the upper or lower bound, the graph indicates that the relative variable 

importance metrics change substantially over time. It does not recommend removing specific predictors.13 

[Insert Figure 4 here] 

                                                 
13 To be conservative, we compare the statistical and economic predictive performance of the original ols_pars model 

with versions that only consider the top five or ten predictors in terms of relative VI. Out-of-sample tests (unreported) 

are identical to the tests shown in Section 5.2. We find that neither the ols_top5 nor the ols_top10 model exhibits 

substantial outperformance in any of the tests, so we retract the idea of removing uninformative variables from the 

predictor sets, and instead consider each predictor as informative (to varying degrees). Additionally, we find that the 

pre-estimation variable selection based on relative importance metrics derived from the entire sample period can lead 

to foresight bias, undermining the credibility of any out-of-sample tests. 
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5.2. Out-of-sample tests 

5.2.1. Statistical predictive performance 

Since the forecast models behave similarly from a model complexity and relative variable importance 

perspective, we aim to determine whether they differ in statistical predictive performance. We therefore 

conduct three tests: First, in Panel A of Table 2, we follow Lewellen (2015) and Drobetz at al. (2019), and 

calculate the out-of-sample predictive slopes. These allow us to assess the precision and accuracy of the 

excess return predictions (regardless of any naïve benchmark). Second, in Panel B of Table 2, we follow 

Gu, Kelly, and Xiu (2020), and calculate out-of-sample predictive R2 metrics relative to a naïve excess 

return forecast of zero. We compute the metrics in Table 2 for each model and three subsamples: the full 

sample, and two subsamples that only contain large or small firms (based on the market capitalization). 

Third, in Table 3, we assess the relative predictive performance of each model in a pairwise comparison. 

We conduct a modified Diebold-Mariano (1995) test (DM test) to gauge the differences in out-of-sample 

predictive power between two models. 

[Insert Tables 2 and 3 here] 

Panel A of Table 2 presents the time series averages of out-of-sample predictive slopes (𝑃𝑆𝑜𝑜𝑠
2 ) cal-

culated from the test sample at each re-estimation date. These are derived from pooled regressions of real-

ized excess returns on the corresponding estimates from our forecast models, i.e., 𝑃𝑆𝑜𝑜𝑠 =
𝐶𝑜𝑣(𝑅𝑟𝑒𝑎𝑙,𝑅𝑝𝑟𝑒𝑑)

𝑉𝑎𝑟(𝑅𝑝𝑟𝑒𝑑)
. 

The predictive slopes are close to 1 for the machine learning models, indicating that forecast dispersion 

primarily reflects cross-sectional variation in true expected excess returns.14 They are much smaller for the 

OLS-based models, and even more pronounced for the full predictor set, which is due to the overfitting that 

can arise because it contains too many predictors with a low signal-to-noise ratio. 

Importantly, the predictive slopes for the neural network models deteriorate quickly in the number 

of hidden layers, which is in line with Gu, Kelly, and Xiu’s (2020) findings and arises due to overfitting. 

Deeper neural networks seem to be too complex for the relatively small dataset and parsimonious set of 

                                                 
14 𝑃𝑆𝑜𝑜𝑠 larger than 1 indicate overly narrow forecasts, while 𝑃𝑆𝑜𝑜𝑠 smaller than 1 indicate overly wide predictions. 
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predictors, and/or the monthly excess return setting. Since this pattern holds for other measures of statistical 

and economic predictive performance, we only present and discuss the results for the simplest nn_1 archi-

tecture going forward. 

Considering the full sample, the predictive slopes are closest to 1 for the tree-based models (1.03 and 

1.07 for rf and gbrt) and the neural network architecture (0.98 for nn_1), followed by the dimension-reduc-

ing models (0.74 and 0.76 for pcr and pls). Note that selecting predictors manually (ols_pars with 0.65) is 

inferior to using a rule-based selecting/shrinking technique (elanet with 0.92), while incorporating the full 

set of 341 predictors performs worst (0.45 for ols_full). Although the patterns are similar for the two market 

capitalization-based subsamples, the magnitudes of the predictive slopes are substantially higher for the 

“small firms” subsample. There are two likely reasons for this: First, the models are estimated from the full 

sample, so differences in cross-sectional variation in true expected excess returns between the subsamples 

could explain differences in predictive slopes. Second, machine learning algorithms could forecast the ex-

cess returns of small firms indeed better. 

Panel B of Table 2 presents the time series averages of predictive 𝑅2s (𝑅𝑜𝑜𝑠
2 ) calculated from the test 

sample at each re-estimation date. These are derived by comparing each model’s 𝑅𝑜𝑜𝑠
2  with the numbers of 

the naïve excess return forecast of zero, i.e., 𝑅𝑜𝑜𝑠
2 = 1 −

𝑆𝑆𝐸(𝑅𝑟𝑒𝑎𝑙,𝑅𝑝𝑟𝑒𝑑)

𝑆𝑆𝐸(𝑅𝑟𝑒𝑎𝑙,0)
.15 Considering the full sample, our 

results are in line with Gu, Kelly, and Xiu (2020) and underline our prior findings. In particular, the ols_full 

model exhibits the worst predictive power, a negative 𝑅𝑜𝑜𝑠
2  metric (-0.52%), while the ols_pars model 

avoids overfitting, resulting in a substantially larger number (0.57%). Each of the remaining machine learn-

ing models beats by far the ols_pars benchmark in the sense of higher 𝑅𝑜𝑜𝑠
2  metrics. Restricting the com-

plexity of the ols_full model by variable selection/shrinkage (1.21% for elanet) or dimension reduction 

(1.24% and 1.08% for pcr and pls, respectively), or by adding interactions and nonlinearity to the ols_pars 

                                                 
15 As a naïve benchmark, the historical average of excess returns is widely used, especially because of its performance 

at a portfolio level. However, many studies, including Gu, Kelly, and Xiu (2020), suggest that the historical average 

is less applicable at a stock level. Due to large noise in single excess returns, historical averages typically underperform 

the naïve forecast of zero by a large margin. To set the highest possible bar for identifying incremental predictive 

performance, we opt to compare the 𝑅2s against a naïve excess return forecast of zero. 
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model with a tree-based approach (1.18% and 1.14% for rf and gbrt, respectively) or neural network archi-

tecture (1.23% for nn_1) boosts the predictive performance. Again, the patterns remain qualitatively the 

same for the two market capitalization-based subsamples, with substantially higher 𝑅𝑜𝑜𝑠
2  metrics for the 

“small firms” subsample. 

Table 3 presents DM test statistics to enable a pairwise comparison of predictive performance. We 

again follow Gu, Kelly, and Xiu (2020), and apply a modified version of the DM test to compare the fore-

casts models’ monthly MSFEs, i.e., 𝑀𝑆𝐹𝐸𝑡+1 =
1

𝑁𝑡+1
∑ (𝑒̂𝑖,𝑡+1)2𝑁𝑡+1

𝑖=1 .16 The modified DM test statistic for 

comparing column model 𝑗 and row model 𝑘 is 𝐷𝑀𝑘𝑗 =
𝑑̅𝑘𝑗

𝜎̂𝑑̅𝑘𝑗

, where 𝑑𝑘𝑗,𝑡+1 = 𝑀𝑆𝐹𝐸𝑡+1
(𝑘)

− 𝑀𝑆𝐹𝐸𝑡+1
(𝑗)

 is 

the difference in MSFEs, 𝑑̅𝑘𝑗 =
1

𝑇
𝑑𝑘𝑗,𝑡+1 is the time series average of these differences, and 𝜎̂𝑑̅𝑘𝑗

 is the 

Newey and West (1987) standard error of 𝑑𝑘𝑗,𝑡+1 (with four lags to account for possible autocorrelation). 

We follow the convention that positive signs of 𝐷𝑀𝑘𝑗 indicate superior predictive performance of column 

model 𝑗, i.e., that it yields, on average, lower forecast errors than row model 𝑖. As DM test statistics are 

𝑁(0,1)-distributed and test the null hypothesis that the divergence between two forecast models is zero, 

they map to p-values in the same way as regression t-statistics. 

We interpret the DM test statistics derived from the pairwise comparison in two different ways: First, 

we consider them separately, without taking into account that other pairwise comparisons are conducted 

simultaneously. For a significance level of 5%, the threshold for the test statistics to indicate significance 

is 1.96. We denote single-comparison significance with boldface. Second, we address the multiple compar-

ison issue by using the Bonferroni correction, which divides the 5% significance level by the number of 

simultaneously conducted comparisons. Comparing eight models, this adjustment increases the signifi-

cance threshold to 2.50. We denote multiple-comparison significance with an asterisk. 

                                                 
16 The DM test usually compares the forecast errors from two models at a stock level, requiring weak error dependence 

for asymptotic normality. While the TS return dependence is sufficiently weak in our setting, it is questionable whether 

this requirement is fulfilled, due to a potentially strong CS return dependence. 
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We observe that our results underline the tendencies found so far. Each machine learning model beats 

the OLS framework, which holds for both single- and multiple-comparison cases. One idiosyncrasy is the 

nn_1 model, which slightly misses significance relative to the ols_pars benchmark (1.55). Moreover, since 

the remaining statistics are insignificant, it is impossible to draw any further conclusions regarding the 

relative outperformance of the other forecast models. 

5.2.2. Expected return sorted portfolios 

The various models exhibit similar behavior with regard to model complexity and relative VI, but 

have substantially different out-of-sample predictive power. Note that the tests conducted in Section 5.2.1 

are statistical in nature, while Leitch and Tanner (1991) suggest there may be only a weak association 

between statistical measures and economic profitability. Therefore, it is helpful to understand whether dif-

ferences in statistical predictive performance translate into differences in predictive power from the eco-

nomic perspective of a realistic trading strategy. At the end of each month, we first sort stocks into decile 

portfolios based on the respective excess return estimates. For each model and decile portfolio, we then 

calculate the weighted mean of ex-ante predicted and ex-post realized excess returns. Based on the realized 

excess returns, we also compute the standard deviation, annualized Sharpe ratio, and the t-statistic testing 

the null hypothesis that realized excess returns are zero. Table 4 presents the time series averages of the 

monthly figures. 

[Insert Table 4 here] 

In general, the patterns are similar for the equal- and value-weighted decile portfolios, although they 

are substantially more pronounced for the equal-weighting scheme (in terms of higher Sharpe ratios and t-

statistics). The average realized excess returns line up almost monotonically with average predicted excess 

returns, resulting in positive H-L spreads that are statistically significant and economically large. The H-L 

returns are, on average, more than 75% higher for the equal-weighted decile portfolios, indicating that a 

substantial portion of the excess returns is driven by small firms. However, all H-L spreads, using both the 

equal-weighting and the value-weighting scheme, suggest economic profitability. The results highlight that 

Electronic copy available at: https://ssrn.com/abstract=3640631



27 

all presented approaches capture cross-sectional variation in realized excess returns, but the potential for 

providing profitable trading signals differs substantially across them. 

We compare the equal-weighted H-L returns, which tend to be driven more by the long side (decile 

10) than the short side (decile 1). The values indicate that differences in statistical predictive performance 

translate at least partly into differences in economic profitability. Again, the ols_full model performs the 

worst, the ols_pars model performs slightly better, and the remaining forecast models outperform substan-

tially. The realized excess returns of decile portfolios based on the nn_1 architecture are most promising, 

ranging from -1.25% to 2.01% per month, resulting in a monthly H-L spread of 3.26%. This implies a return 

ratio, i.e., ratio between realized and predicted average H-L spread, of 1.04 (=3.26%÷3.13%), which is 

almost identical to the time-series average of the predictive slopes (see Table 2, Panel A). The annualized 

Sharpe ratio is 3.89, with a corresponding t-statistic of 13.96. 

Given that higher average returns could be caused by higher systematic risk, it is necessary to exam-

ine risk-adjusted performance. We calculate alphas of the decile portfolios relative to the CAPM and the 

Fama-French (2015) five-factor model (FF5M), which we extend here by using Carhart’s (1997) momen-

tum factor. As the results are similar but less conservative for the unconditional version, where betas are 

assumed to be time constant, we only present conditional alphas for the sake of brevity. The beginning-of-

month aggregate dividend yields are used to capture time variability in betas (Chordia and Avramov, 2006; 

Ferson and Schadt, 1996; Shanken, 1990). Table 5 presents the time series averages of the monthly figures. 

[Insert Table 5 here] 

Overall, the risk-adjusted values are very close to their raw counterparts, suggesting that the positive 

average H-L returns are not driven mainly by higher systematic risk. Additionally, all the patterns observ-

able in Table 4 emerge in Table 5 as well. The performance is better for the equal-weighting scheme, the 

alphas line up almost monotonically with the average predicted excess returns (regardless of the underlying 

systematic risk model), and the results hold for all forecast models. 
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5.2.3. Investment portfolio performance 

Since the decile portfolio sorts suggest that some forecast models are more promising than others, 

we next explore whether these models provide superior value-added to investors under realistic trading 

assumptions. We visually summarize the cumulative performance for long- and short-only investment strat-

egies based on each forecast model, taking the cumulative market excess return as a benchmark. We derive 

cumulative performance by applying a rule-based approach. At the end of each month, it selects the top 

decile stocks with the highest expected excess returns, or the bottom decile stocks with the lowest expected 

excess returns.17 We present the results for both weighting schemes. Figure 5 depicts the cumulative per-

formance of investments of €1 in each strategy at the beginning of January 2000. 

[Insert Figure 5 here] 

The results again reflect our previous findings, and are qualitatively comparable for both weighting 

schemes. All investment strategies are capable of dissecting the market universe into high- and low-per-

forming stocks. However, that ability varies significantly among the forecast models, and leads to consid-

erable performance discrepancies. Again, we observe that the ols_full model performs the worst, the nn_1 

model performs the best, and the remaining models lie in between. 

As the portfolio performance tends to be driven by the long side rather than the short side (see Tables 

4 and 5), and due to widespread short-selling restrictions in the industry, we now focus on a long-only 

version of our investment strategy.18 We compute return and risk figures for the market portfolio and each 

long-only forecast portfolio. We also take into account transaction costs when measuring performance. In 

line with Bollerslev et al. (2018) and Koijen et al. (2018), we compute the portfolio’s transaction costs 

(PTC) by incorporating the portfolio’s one-sided turnover (PTO) and half-spread (PHS) at the end of each 

month 𝑡.19 

                                                 
17 The results remain qualitatively the same for different restructuring periods and for different quantile definitions. 
18 The results remain qualitatively the same for a long-short version of our investment strategies. 
19 We calculate the PTO as the sum of absolute changes in the value weight of the 𝑖 =  1, … , 𝑛 stocks included in the 

portfolio, divided by two to avoid double-counting buys and sells, i.e., 𝑃𝑇𝑂𝑡 =
1

2
∗ ∑ |𝑤𝑖,𝑡−1 × (1 + 𝑟𝑖,𝑡) − 𝑤𝑖,𝑡|𝑛

𝑖=1 , 
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Table 6 depicts the return and risk metrics for each portfolio (both before and after transaction costs). 

The terminal value is presented at the end of December 2020, as well as annualized return and volatility, 

maximum drawdown, annualized Sharpe ratio, and annualized information ratio (relative to the market 

portfolio). It also shows actual and applied transaction costs. 

Independent of the weighting scheme, all the forecast portfolios substantially outperform the market. 

However, our main objective is to examine whether interactions and nonlinear effects add incremental 

predictive power to a parsimonious forecast model that has already been proven to perform well. This is 

why we use the ols_pars model as our conservative benchmark. In addition, as we are primary interested in 

the forecast models’ ability to select stocks ex-ante that tend to perform well ex-post, we opt for the naïve 

equal-weighting scheme in presenting and discussing investment portfolio performance. 

[Insert Table 6 here] 

Ignoring transaction costs, the ols_pars portfolio yields a terminal value of €70.29. The excess return 

is substantially higher than that for the market portfolio (22.45% vs. 4.96%), while volatility is only slightly 

elevated (18.20% vs. 16.21%). This increases the Sharpe ratio (1.24 vs. 0.31). Moreover, the OLS-based 

forecast portfolio exhibits a lower maximum drawdown (51.24% vs. 60.32%) as well as a high information 

ratio (3.57). Because the ols_pars model outperforms, it is suitable to serve as our conservative benchmark. 

However, adding interactions and nonlinear effects to the ols_pars model without any restriction, leading 

to the ols_full model, weakens the return and risk figures. 

Implementing regularization (i.e., variable selection/shrinkage or dimension reduction) to restrict the 

complexity of the ols_full model, or adding interactions and nonlinearity with a tree-based approach, adds 

substantial predictive power. The volatilities are slightly higher than those of the ols_pars model (ranging 

from 18.54% for pls and 19.07% for pcr), and the excess returns range from 23.08% (elanet) to 23.77% 

                                                 
where 𝑤𝑖,𝑡 is the value weight assigned to stock 𝑖 at the end of month 𝑡, and 𝑟𝑖,𝑡 is the stock’s excess return over month 

𝑡. For equal-weighted portfolios, we compute the PHS as the equal-weighted average of the stocks’ quoted half-

spreads, i.e., 𝑃𝐻𝑆𝑡 =
1

𝑛
× ∑

1

2
×

(𝐴𝑆𝐾𝑖,𝑡−𝐵𝐼𝐷𝑖,𝑡)
1

2
∗(𝐴𝑆𝐾𝑖,𝑡+𝐵𝐼𝐷𝑖,𝑡)

𝑛
𝑖=1 . For value-weighted portfolios, we calculate the PHS as the value-

weighted average. We derive the PTC as the product of the PTO and PHS figures, i.e., 𝑃𝑇𝐶𝑡 = PTOt × 𝑃𝐻𝑆𝑡 . 
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(gbrt). The machine learning portfolios sharply increase the terminal value relative to the ols_pars portfolio, 

with similar figures for maximum drawdown, Sharpe ratio, and information ratio. The nn_1 model performs 

best: It raises the terminal value relative to the ols_pars portfolio by €36.89 (or 52.48%) to €107.18, and 

increases the excess return to 24.93%, with similar figures for standard deviation (17.82%) and maximum 

drawdown (50.12%). This translates into the highest Sharpe ratio (1.41) and information ratio (4.27). 

Next, we account for transaction costs. The average PTO ranges from 27.17% to 39.54%, and is 

slightly higher for the value-weighting scheme. In contrast, the average PHS is much higher for the equal-

weighted scheme (20 bps vs. 60 bps). By definition, it puts larger weights on smaller stocks that are less 

liquid, and therefore more expensive (in terms of higher bid-ask spreads). As a result, the average PTCs are 

nearly three times larger for the equal-weighted portfolios. 

Although the transaction cost models of Bollerslev et al. (2018) and Koijen et al. (2018) are quite 

conservative, we follow an even more cautious approach, and deduct 57 bps from each portfolio’s monthly 

excess returns.20 The actual transaction costs are many times lower than this deduction, and therefore the 

applied transaction costs offer a conservative lower bound for the performance of a realistic trading strategy. 

Overall, each equal-weighted portfolio continues to outperform the market. The performance of value-

weighted portfolios (except for pcr and nn) falls slightly under the benchmark. We attribute this to the 

overly conservative transaction cost discount. 

6. Classification-based portfolio formation 

Our results indicate that interactions and nonlinear effects are important, and could be exploited by 

adequately trained and tuned machine learning models. The forecast models handle the high dimensionality 

issue with varying degrees of success, resulting in differing levels of predictive performance. To evaluate 

the economic predictive power, we compare the cumulative performance of investment portfolios. They 

                                                 
20 Novy-Marx and Velikov (2016) suggest a lump-sum discount on the portfolio’s return, which ranges from 20bps to 

57bps for mid-turnover strategies, with an average PTO between 14% and 35%. Since the forecast portfolios exhibit 

PTOs within this interval or only slightly above, they are likely to be mid- rather than low-turnover strategies (average 

PTO < 10%), or high-turnover strategies (average PTO > 90%). 
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are formed through a two-step procedure that uses forecast models to derive expected return estimates first, 

and selects stocks with the highest expected return forecasts into long-only portfolios second. 

Considering this “detour” through the estimation of specific stock-level expected returns, we next 

study whether a single-step portfolio formation process can further improve predictive performance. We 

follow the popular learning-to-rank (LTR) classification approach. Instead of incorporating realized excess 

returns as labels to train a regression model, the stocks from the training and validation sample are cross-

sectionally sorted into decile portfolios based on realized excess returns. These affiliations are then used as 

aggregate labels in fitting a rank-based classification model. Top-decile stocks are preferable to bottom-

decile stocks, so decile portfolio labels serve as preference ranks. 

Such pre-estimation portfolio sorting, rather than aggregating stocks based on expected return esti-

mates, can help avoid the noise in stock-level excess returns, while maintaining the signal that is most 

important from a trading perspective (i.e., the correct classification into a decile portfolio). The LTR ap-

proach computes probability estimates for the affiliation of a stock to each decile portfolio separately, and 

then sums these probabilities into an aggregate probability score, which it uses to classify the stock into a 

specific decile portfolio. 

6.1. Machine learning method: Support vector machines 

As discussed earlier, support vector machines (SVMs) are a popular classification method. The idea 

behind SVMs is to search for hyperplanes that territorially divide a multidimensional vector space (our 

sample of firm observations, consisting of stock-level predictors and decile portfolio labels) into groups of 

vectors that belong to the same class. Each potential hyperplane is located in an area where vectors of two 

different classes are close together. To increase computational speed, an SVM does not always use all the 

vectors from the vector space. Rather, it focuses on those in the immediate neighborhood of the potential 

hyperplane, or so-called “support vectors”. The algorithm then specifies the optimal hyperplane by aiming 

to 1) maximize the distance of correctly classified support vectors from the hyperplane, and 2) minimize 

the number of misclassified support vectors. 
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In a multi-class scenario, SVMs fit optimal hyperplanes by means of a pairwise class comparison. In 

theory, by allowing for an unrestricted nonlinear transformation of the vector space, and with indefinite 

computational power and time, the algorithm can avoid any misclassifications. But since this likely leads 

to overfitting, regardless of obvious computational limitations, SVMs must be strongly regularized. 

To this end, we use a radial basis function (RBF) kernel for a proper nonlinear transformation of the 

vector space. We simultaneously apply three types of regularization. First, we constrain the influence of 

any single vector, i.e., we restrict the space within which it can serve as a support vector. A smaller vector 

influence 𝛾 avoids enabling vectors to serve as supports for overly distant hyperplanes. Second, we set the 

permitted number of misclassified vectors to a positive value, i.e., we allow for a certain number of mis-

classifications. Smaller misclassification costs 𝑐 allow us to ignore more of the misclassified support vec-

tors, while continuing to fit optimal hyperplanes. To tune both parameter, we select a loss function that 

meets our objective to classify stocks into ranked decile portfolios, based on the confusion matrix that 

contrasts predicted and realized classes. For binary (two-class) classifications, potential outcomes are true 

positives (TPs) if the predicted and realized class equal 1, true negatives (TNs) if predicted and realized 

class equal 0, false positives (FPs) if predicted class equals 1 but realized class equals 0, and false negatives 

(FNs) if predicted class equals 0 but realized class equals 1. 

In a two-class scenario, classification performance is usually evaluated using confusion matrices, 

together with a broad set of classification measures, in particular, accuracy, i.e., 
#(𝑇𝑃+𝑇𝑁)

#(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)
, sensitiv-

ity, i.e., 
#𝑇𝑃

#(𝑇𝑃+𝐹𝑁)
, and specificity, i.e., 

#𝑇𝑁

#(𝑇𝑁+𝐹𝑃)
. Multi-class classification metrics are derived as follows: 

Separately for each class, the binary one-against-all approach is used to compute hypothetic two-class num-

bers. It considers the class under investigation as 1, and all remaining classes as 0. Aggregate metrics are 

then calculated as the weighted average of each class’ individual metric, taking the number of realized cases 

within each class as weights. Note that aggregate accuracy can equivalently be computed as the number of 

true classifications (cases in the cells on the confusion matrix’s left diagonal) divided by the number of 

total classifications (cases in any cell of the confusion matrix). To give an example, Table B1 of Appendix 
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B provides a visualization of a three-level classification with inherent rank order (3 ≻ 2 ≻ 1). The multi-

class accuracy measure in this illustration is 
10+10+10

100
= 30% for both scenarios. 

Traditional classifications would aim to maximize this multi-class accuracy. However, this loss func-

tion is not applicable for an LTR classification because it does not consider the inherent rank order, i.e., the 

severity of the misclassifications. Although exhibiting the same 30% accuracy, the predictions in scenario 

A differ from their realizations more strongly than in scenario B. To put this in a trading context, selecting 

a stock that is expected to be in the best decile portfolio, but is actually in the second-best decile portfolio, 

is much less problematic than accidently selecting a stock from the worst decile portfolio. This is why the 

goal of our SVM approach is to minimize an objective function that penalizes the difference between pre-

dicted and realized class ranks, i.e., Φ(𝜃) = ∑ |𝑝𝑟𝑒𝑑𝑖 − 𝑟𝑒𝑎𝑙𝑖|𝑁
𝑖= 1 , where 𝑝𝑟𝑒𝑑𝑖 ∈ {1, … ,10} and 𝑟𝑒𝑎𝑙𝑖 ∈

{1, … ,10} are the predicted and realized decile portfolio ranks of stock 𝑖 ∈ {1, … , 𝑁}, respectively. 

Finally, multi-class SVMs are computational intensive, and thus we adapt the ensemble approach 

from the neural network architecture (see Section 4.2.5). At each re-estimation date, we randomly split the 

training sample into ten distinct subsamples, and train ten independent SVMs from these. This increases 

the computational speed, but still enables the algorithm to see the entire training sample. We average the 

different predictions into a single ensemble prediction, which additionally increases the signal-to-noise-

ratio. 

Our svm approach uses a scoring model to classify stocks into decile portfolios. Based on the dis-

aggregated vector space, it estimates the likelihood that a specific stock will be part of a specific decile 

portfolio in the following month 𝑡 + 1. It aggregates those decile-specific probabilities into a probability 

score 𝑆𝑖. It is higher for stocks that are ex-ante expected to be in the decile portfolio with high ex-post 

realized returns, i.e., 𝑆𝑖,𝑡 = ∑ 𝑤𝑗 × 𝑝𝑖𝑗,𝑡
10
𝑗= 1 , where 𝑤𝑗 ∈ {1, … ,10} is the rank of the decile portfolio, and 

𝑝𝑖𝑗 ∈ (0,1) is the probability that stock 𝑖 will be part of decile portfolio 𝑗, while incorporating all the infor-

mation available at the end of month 𝑡. 
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6.2. Out-of-sample tests 

6.2.1. Statistical predictive performance 

Our primary interest is potential performance differences between traditional expected return-based 

portfolio formation and a classification-based approach. Therefore, we next compare measures of predictive 

performance. To set the highest possible bar for identifying incremental predictive performance, we use the 

best-performing machine learning method, i.e., the nn_1 model, as our relevant benchmark. Table 7 shows 

the confusion matrices, together with a broad set of classification measures. 

The entries in the diagonal of the confusion matrix indicate that, at an aggregate level, both models 

correctly classify stocks into decile portfolios. However, our SVM approach is slightly more accurate than 

the nn_1 architecture (12.63% vs. 12.10%), as well as marginally more sensitive (12.62% vs. 12.10%) and 

specific (90.29% and 90.23%). Compared with a 10.04% accuracy of a random classifier, the accuracy of 

both models is significantly higher. They work best for the top and bottom decile portfolios, and the patterns 

are slightly more pronounced for the short than the long side. Moreover, the SVM-based predictions differ 

less strongly from their realizations than those obtained from neural networks. This points toward a superior 

misclassification distribution, which might translate into an outperformance from an economic perspective, 

and is because SVMs are able to incorporate the inherent rank order of decile portfolios explicitly. 

[Insert Table 7 here] 

6.2.2. Investment portfolio performance 

In a final step, recognizing Leitch and Tanner’s (1991) argument that the association between statis-

tical predictive performance (classification measures) and economic profitability may be weak, we compare 

the cumulative performance of long-only investment portfolios. Table 8 shows the return and risk figures 

from Table 6 for the ols_pars, nn_1, and svm models. The cumulative performance metrics extend our 

earlier findings. Both models substantially outperform the benchmark model (ols_pars), while exhibiting 

similar return-risk behavior. Most important, the numbers of the svm model are slightly superior to that of 

Electronic copy available at: https://ssrn.com/abstract=3640631



35 

the neural network for both weighting schemes. We interpret these results to mean that a classification-

based approach can be even better than the best-performing expected return-based portfolio formation. 

[Insert Table 8 here] 

7. Conclusion 

By using market and fundamental data for European firms, we study the predictive performance of 

machine learning methods in forecasting stock returns, including approaches for variable selection/shrink-

age or dimension reduction, tree-based models, and neural networks. We conduct a comparative analysis 

in terms of statistical and economic performance metrics. Following Gu, Kelly, and Xiu (2020) closely, we 

enhance the set of twenty-two predictors in Drobetz et al. (2019) by two-way interactions as well as second- 

and third-order polynomials to capture nonlinearity. We confirm that interactions and nonlinear effects are 

important, and add incremental predictive power. 

To exploit these effects, machine learning methods must be adequately trained and tuned avoid over-

fitting. Each model’s degree of complexity varies substantially over time, and different models find similar 

predictors to be important. Despite these commonalities, the forecast models we study exhibit different 

statistical predictive performance (predictive slopes closer to 1, higher predictive 𝑅2 metrics, and positive 

DM test statistics). This further translates into markedly different economic profitability. 

In particular, the return and risk figures of long-only investment strategies suggest that all forecast 

portfolios beat our linear benchmark model. The neural network architecture performs best, also after ac-

counting for transaction costs. Because it follows the “traditional” expected return-based portfolio for-

mation, i.e., estimating stock-level expected returns and then aggregating stocks again into decile portfolios, 

we compare its performance with a simpler, classification-based approach. In our sample, we find that a 

support vector machine can classify stocks into decile portfolios that are even better than that obtained from 

neural networks. This leads to a more straightforward portfolio formation process that avoids some of the 

noise in stock-level excess returns, while maintaining the signal that is most important for a trading strategy, 

i.e., the correct classification into a decile portfolio.
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Tables 

Table 1 

Descriptive statistics, 1990:01-2020:12 

This table presents the definitions, and reports the time-series averages of monthly cross-sectional mean and standard deviation for the excess 

return and each of the twenty-two characteristics as well as the overall sample size. The sample includes all firms that were publicly listed in one 
of the nineteen Eurozone countries in any given month during the January 1990-December 2020 sample period. The data coming from Thomson 

Reuters Datastream are collected on a monthly basis and, if currency-related, denominated in Euro. Market data are assumed to become public 

immediately, while fundamental data are assumed to be known four months after the fiscal year-end. 

#   Avg Std Definition 

  Excess return [%] 0.51 4.55 
Return in excess of the three-month EURIBOR rate (scaled to the one-month 
horizon) 

          

1 size 13.22 0.48 Log market capitalization of equity at the end of the prior month 

2 bm -0.55 0.18 
Log book value of equity minus log market capitalization of equity at the end of the 
prior month 

3 operatingprofitability 0.06 0.01 Operating profit divided by average total assets in the prior fiscal year 

4 totalassetgrowth 0.07 0.04 Log total asset growth in the prior fiscal year 

5 ret_2_12 0.09 0.20 Excess return from month -12 to month -2 

6 issues_1_36 0.09 0.02 Log growth in split-adjusted shares outstanding from month -36 to month -1 

7 accrualschange -0.04 0.01 Working capital accruals (based on Sloan, 1996) in the prior fiscal year 

8 roa 0.05 0.01 
Income before extraordinary items divided by average total assets (return on assets) 
in the prior fiscal year 

9 investment 1.02 0.08 Capital expenditures divided by net sales and revenues in the prior fiscal year 

10 ret_1 0.01 0.05 Excess return of the prior month 

11 ret_12_36 0.09 0.31 Excess return from month -36 to month -12 

12 dy 0.03 0.01 
Dividends per share over the prior 12 months divided by price at the end of the prior 
month 

13 beta 0.83 0.10 Market beta, estimated from weekly returns from month -36 to month -1 

14 vola 0.32 0.06 Standard deviation, estimated from weekly returns from month -12 to month -1 

15 turnover 0.02 0.01 Average monthly turnover volume from month -12 to month -1 

16 debttoprice 0.84 0.32 
Short-term plus long-term debt in the prior fiscal year divided by market 

capitalization at the end of the prior month 

17 salestoprice 2.16 0.60 
Net sales and revenues in the prior fiscal year divided by market capitalization at the 
end of the prior month 

18 cftoprice 0.14 0.04 
Net income plus depreciation, depletion and amortization in the prior fiscal year 

divided by market capitalization at the end of the prior month 

19 earningstoprice 0.04 0.02 
Net income in the prior fiscal year divided by market capitalization at the end of the 
prior month 

20 issues_1_12 0.02 0.01 Log growth in split-adjusted shares outstanding from month -12 to month -1 

21 fcdispersion -2.05 0.18 
Log standard deviation of I/B/E/S EPS forecasts minus log average absolute value of 

I/B/E/S EPS forecasts from month -12 to month -1 

22 grossprofitability 0.30 0.03 
Net sales and revenues minus costs of goods sold divided by average total assets in 
the prior fiscal year 

          

  Sample size 832   
Number of firms with non-missing observations for the excess return and each of the 

twenty-two characteristics 
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Table 2 

Predictive slopes and predictive 𝑹𝟐s, 2000:01-2020:12 

This table presents predictive performance metrics of each machine learning model introduced in Section 4.2. Panel A reports the time series 

averages of out-of-sample predictive slopes (𝑃𝑆𝑜𝑜𝑠
2 ) calculated from the test sample at each re-estimation date. These are derived from pooled 

regressions of realized excess returns on the corresponding estimates from our forecast models, i.e., 𝑃𝑆𝑜𝑜𝑠 =
𝐶𝑜𝑣(𝑅𝑟𝑒𝑎𝑙,𝑅𝑝𝑟𝑒𝑑)

𝑉𝑎𝑟(𝑅𝑝𝑟𝑒𝑑)
. Panel B reports the 

time series averages of predictive 𝑅2s (𝑅𝑜𝑜𝑠
2 ) calculated from the test sample at each re-estimation date. These are derived by comparing each 

model’s 𝑅𝑜𝑜𝑠
2  with the numbers of the naïve excess return forecast of zero, i.e., 𝑅𝑜𝑜𝑠

2 = 1 −
𝑆𝑆𝐸(𝑅𝑟𝑒𝑎𝑙,𝑅𝑝𝑟𝑒𝑑)

𝑆𝑆𝐸(𝑅𝑟𝑒𝑎𝑙,0)
. The numbers are presented for three 

subsamples: the full sample, and two subsamples that only contain large or small firms (based on the market capitalization). The sample includes 
all firms that were publicly listed in one of the nineteen Eurozone countries in any given month during the January 1990-December 2020 sample 

period. The data coming from Thomson Reuters Datastream are collected on a monthly basis and, if currency-related, denominated in Euro. 

Market data are assumed to become public immediately, while fundamental data are assumed to be known four months after the fiscal year-end. 

    ols_full ols_pars elanet pcr pls rf gbrt nn_1 

Panel A: Predictive slopes                 

  Full sample 0.45 0.65 0.92 0.74 0.76 1.03 1.07 0.98 

  Large firms 0.30 0.46 0.67 0.56 0.58 0.77 0.82 0.71 

  Small firms 0.53 0.79 1.05 0.84 0.87 1.18 1.23 1.15 

                    

Panel B: Predictve 𝑅2s [%]                 

  Full sample -0.52 0.57 1.21 1.24 1.08 1.18 1.14 1.23 

  Large firms -1.16 0.11 0.75 0.85 0.74 0.92 0.74 0.93 

  Small firms -0.10 0.90 1.55 1.54 1.37 1.40 1.46 1.47 

 

Table 3 

Between-model comparison of predictive performance, 2000:01-2020:12 

This table reports modified Diebold-Mariano (1995) test (DM test) statistics for the pairwise comparison of the predictive performance of each 

machine learning model introduced in Section 4.2. The modified version of the DM test compares the forecasts models’ monthly MSFEs, i.e., 

𝑀𝑆𝐹𝐸𝑡+1 =
1

𝑁𝑡+1
∑ (𝑒̂𝑖,𝑡+1)2𝑁𝑡+1

𝑖=1 . The modified DM test statistic for comparing column model 𝑗 and row model 𝑘 is 𝐷𝑀𝑘𝑗 =
𝑑̅𝑘𝑗

𝜎̂𝑑̅𝑘𝑗

, where 𝑑𝑘𝑗,𝑡+1 =

𝑀𝑆𝐹𝐸𝑡+1
(𝑘)

− 𝑀𝑆𝐹𝐸𝑡+1
(𝑗)

 is the difference in MSFEs, 𝑑̅𝑘𝑗 =
1

𝑇
𝑑𝑘𝑗,𝑡+1 is the time series average of these differences, and 𝜎̂𝑑̅𝑘𝑗

 is the Newey and West 

(1987) standard error of 𝑑𝑘𝑗,𝑡+1 (with four lags to account for possible autocorrelation). The sample includes all firms that were publicly listed in 

one of the nineteen Eurozone countries in any given month during the January 1990-December 2020 sample period. The data coming from 

Thomson Reuters Datastream are collected on a monthly basis and, if currency-related, denominated in Euro. Market data are assumed to become 

public immediately, while fundamental data are assumed to be known four months after the fiscal year-end. 

    ols_full ols_pars elanet pcr pls rf gbrt nn_1 

  ols_full   2.29 4.12* 4.69* 4.46* 3.75* 3.70* 2.50* 

  ols_pars     3.35* 3.32* 2.86* 3.01* 2.90* 1.55 

  elanet       1.03 0.06 -0.56 -0.82 -0.49 

  pcr         -1.23 -1.47 -1.41 -0.99 

  pls           -0.44 -0.55 -0.57 

  rf             -0.33 -0.27 

  gbrt               -0.19 

  nn_1                 
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Table 4 

Excess returns for expected return-sorted portfolios, 2000:01-2020:12 

This table presents the time-series averages of predicted and realized excess returns of decile portfolios based on the expected excess returns 
obtained from each machine learning model introduced in Section 4.2. In addition, based on the realized excess returns, the standard deviation 

and the annualized Sharpe ratio are reported. The t-statistics, testing the null hypothesis that realized excess returns are zero, are calculated using 

the monthly point estimates, incorporating a Newey and West (1987) correction with four lags to account for possible autocorrelation in the 
realized excess returns. The numbers are presented for both equal- and value-weighted decile portfolios. The sample includes all firms that were 

publicly listed in one of the nineteen Eurozone countries in any given month during the January 1990-December 2020 sample period. The data 

coming from Thomson Reuters Datastream are collected on a monthly basis and, if currency-related, denominated in Euro. Market data are 
assumed to become public immediately, while fundamental data are assumed to be known four months after the fiscal year-end. 

      Equal-weighted   Value-weighted 

      Pred Real Std Shp t-stat   Pred Real Std Shp t-stat 

ols_full                         

  Low (L)   -2.70% -1.00% 5.46% -0.64 -2.16   -2.39% -0.65% 5.88% -0.39 -1.43 

  2   -1.07% -0.27% 4.56% -0.20 -0.69   -1.06% -0.10% 5.21% -0.07 -0.25 

  3   -0.44% 0.09% 4.45% 0.07 0.25   -0.43% 0.01% 4.82% 0.01 0.03 

  4   0.01% 0.42% 4.36% 0.34 1.21   0.01% 0.29% 4.52% 0.22 0.91 

  5   0.38% 0.49% 4.50% 0.38 1.35   0.38% 0.33% 4.72% 0.24 0.96 

  6   0.74% 0.75% 4.42% 0.59 2.21   0.74% 0.46% 4.78% 0.33 1.47 

  7   1.11% 0.87% 4.60% 0.65 2.50   1.11% 0.70% 4.89% 0.50 2.30 

  8   1.54% 0.96% 4.77% 0.70 2.65   1.54% 0.56% 5.18% 0.37 1.60 

  9   2.10% 1.14% 5.05% 0.78 2.92   2.09% 0.57% 5.15% 0.38 1.56 

  High (H)   3.36% 1.72% 5.73% 1.04 4.01   3.21% 0.69% 6.05% 0.40 1.64 

  H-L   6.06% 2.72% 2.61% 3.62 13.34   5.60% 1.35% 4.03% 1.16 4.67 

                            

ols_pars                         

  Low (L)   -1.71% -1.09% 5.32% -0.71 -2.43   -1.58% -0.80% 5.55% -0.50 -1.82 

  2   -0.70% -0.27% 4.87% -0.19 -0.67   -0.69% -0.13% 5.07% -0.09 -0.38 

  3   -0.22% 0.00% 4.57% 0.00 -0.01   -0.21% -0.07% 4.98% -0.05 -0.17 

  4   0.15% 0.27% 4.60% 0.20 0.73   0.16% 0.19% 4.66% 0.14 0.58 

  5   0.47% 0.49% 4.53% 0.37 1.39   0.47% 0.33% 4.70% 0.24 1.04 

  6   0.77% 0.69% 4.51% 0.53 1.94   0.77% 0.59% 4.88% 0.42 1.72 

  7   1.06% 0.82% 4.69% 0.60 2.31   1.06% 0.48% 5.01% 0.33 1.42 

  8   1.37% 1.07% 4.64% 0.80 3.01   1.37% 0.59% 5.08% 0.40 1.71 

  9   1.77% 1.37% 4.95% 0.96 3.62   1.76% 0.51% 5.41% 0.32 1.35 

  High (H)   2.56% 1.84% 5.26% 1.21 4.52   2.53% 0.84% 5.02% 0.58 2.68 

  H-L   4.27% 2.93% 2.60% 3.91 15.05   4.11% 1.64% 3.71% 1.53 6.19 

                            

elanet                         

  Low (L)   -1.38% -1.17% 6.08% -0.67 -2.32   -1.16% -0.92% 7.43% -0.43 -1.55 

  2   -0.41% -0.30% 4.92% -0.21 -0.75   -0.39% -0.27% 5.58% -0.17 -0.65 

  3   0.00% 0.05% 4.51% 0.04 0.14   0.01% -0.05% 4.90% -0.04 -0.15 

  4   0.27% 0.41% 4.37% 0.33 1.14   0.28% 0.36% 4.80% 0.26 1.11 

  5   0.50% 0.43% 4.33% 0.35 1.32   0.50% 0.15% 4.63% 0.11 0.45 

  6   0.70% 0.61% 4.36% 0.48 1.77   0.70% 0.48% 4.68% 0.36 1.52 

  7   0.90% 0.85% 4.36% 0.68 2.58   0.90% 0.49% 4.74% 0.36 1.59 

  8   1.14% 1.05% 4.60% 0.79 3.01   1.14% 0.57% 4.83% 0.41 1.61 

  9   1.45% 1.35% 5.01% 0.93 3.65   1.44% 0.78% 5.31% 0.51 2.42 

  High (H)   2.10% 1.90% 5.48% 1.20 4.44   2.03% 0.92% 5.60% 0.57 2.31 

  H-L   3.48% 3.07% 2.47% 4.31 16.20   3.19% 1.84% 4.66% 1.37 5.41 
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Table 4 (continued) 

Excess returns for expected return-sorted portfolios, 2000:01-2020:12 

pcr                         

  Low (L)   -1.82% -1.21% 5.93% -0.71 -2.37   -1.57% -0.86% 7.29% -0.41 -1.53 

  2   -0.60% -0.26% 4.81% -0.19 -0.66   -0.58% -0.29% 5.70% -0.17 -0.70 

  3   -0.11% 0.03% 4.59% 0.02 0.07   -0.10% 0.02% 5.25% 0.01 0.06 

  4   0.22% 0.26% 4.38% 0.21 0.77   0.22% 0.16% 4.72% 0.12 0.51 

  5   0.49% 0.46% 4.22% 0.38 1.40   0.49% 0.30% 4.42% 0.24 1.00 

  6   0.73% 0.71% 4.28% 0.58 2.19   0.73% 0.36% 4.38% 0.29 1.27 

  7   0.98% 0.92% 4.44% 0.72 2.68   0.97% 0.49% 4.50% 0.38 1.63 

  8   1.25% 1.00% 4.75% 0.73 2.74   1.25% 0.54% 5.02% 0.37 1.48 

  9   1.62% 1.34% 4.99% 0.93 3.51   1.61% 0.79% 5.27% 0.52 2.12 

  High (H)   2.44% 1.94% 5.51% 1.22 4.45   2.33% 1.12% 5.65% 0.69 2.94 

  H-L   4.26% 3.15% 2.58% 4.23 13.86   3.90% 1.98% 5.09% 1.35 5.32 

                            

pls                         

  Low (L)   -1.81% -1.30% 5.75% -0.78 -2.57   -1.52% -1.11% 7.20% -0.53 -1.94 

  2   -0.54% -0.24% 4.92% -0.17 -0.58   -0.52% -0.23% 5.63% -0.14 -0.55 

  3   -0.03% 0.05% 4.64% 0.04 0.14   -0.02% 0.05% 5.27% 0.04 0.15 

  4   0.30% 0.35% 4.54% 0.26 0.96   0.30% 0.27% 4.74% 0.20 0.78 

  5   0.56% 0.46% 4.31% 0.37 1.36   0.56% 0.15% 4.65% 0.11 0.47 

  6   0.80% 0.68% 4.43% 0.54 2.02   0.80% 0.57% 4.51% 0.43 1.93 

  7   1.04% 0.89% 4.53% 0.68 2.65   1.04% 0.54% 4.65% 0.40 1.77 

  8   1.31% 1.07% 4.54% 0.81 3.07   1.31% 0.62% 4.94% 0.43 1.85 

  9   1.67% 1.29% 4.97% 0.90 3.44   1.66% 0.60% 5.13% 0.40 1.63 

  High (H)   2.47% 1.93% 5.35% 1.25 4.60   2.37% 0.90% 5.57% 0.56 2.26 

  H-L   4.28% 3.23% 2.45% 4.56 14.02   3.89% 2.01% 4.46% 1.56 5.69 

                            

rf                         

  Low (L)   -1.19% -1.15% 6.38% -0.63 -2.18   -1.01% -0.62% 7.54% -0.28 -1.10 

  2   -0.28% -0.33% 5.11% -0.23 -0.83   -0.26% -0.40% 5.85% -0.24 -0.99 

  3   0.10% 0.07% 4.64% 0.05 0.20   0.11% 0.00% 5.03% 0.00 0.00 

  4   0.35% 0.33% 4.45% 0.25 0.93   0.35% 0.30% 4.61% 0.23 0.97 

  5   0.53% 0.47% 4.25% 0.38 1.40   0.53% 0.39% 4.54% 0.30 1.21 

  6   0.68% 0.66% 4.13% 0.55 2.05   0.68% 0.58% 4.44% 0.46 2.01 

  7   0.86% 0.85% 4.30% 0.69 2.57   0.86% 0.54% 4.62% 0.41 1.83 

  8   1.07% 1.02% 4.59% 0.77 2.90   1.07% 0.58% 4.84% 0.41 1.73 

  9   1.30% 1.35% 4.93% 0.95 3.46   1.29% 0.67% 5.21% 0.44 1.74 

  High (H)   1.75% 1.91% 5.39% 1.23 4.42   1.69% 0.89% 6.41% 0.48 1.86 

  H-L   2.94% 3.06% 2.75% 3.86 14.17   2.70% 1.51% 4.79% 1.09 4.50 
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Table 4 (continued) 

Excess returns for expected return-sorted portfolios, 2000:01-2020:12 

gbrt                         

  Low (L)   -1.28% -1.14% 6.21% -0.63 -2.23   -1.05% -0.77% 6.92% -0.39 -1.59 

  2   -0.31% -0.35% 4.91% -0.25 -0.89   -0.30% -0.42% 5.41% -0.27 -1.08 

  3   0.06% 0.11% 4.43% 0.09 0.32   0.06% 0.17% 5.00% 0.12 0.48 

  4   0.30% 0.27% 4.37% 0.22 0.79   0.30% 0.23% 4.32% 0.19 0.73 

  5   0.51% 0.42% 4.35% 0.33 1.24   0.51% 0.32% 4.65% 0.24 0.99 

  6   0.69% 0.62% 4.35% 0.50 1.81   0.69% 0.34% 4.53% 0.26 1.10 

  7   0.87% 0.84% 4.30% 0.68 2.52   0.87% 0.39% 4.76% 0.29 1.14 

  8   1.08% 1.10% 4.61% 0.83 3.02   1.08% 0.56% 5.02% 0.39 1.72 

  9   1.35% 1.36% 5.09% 0.93 3.41   1.34% 0.94% 5.30% 0.61 2.69 

  High (H)   1.94% 1.94% 5.43% 1.24 4.62   1.85% 0.85% 6.00% 0.49 1.96 

  H-L   3.22% 3.08% 2.70% 3.95 13.86   2.91% 1.62% 4.22% 1.33 5.37 

                            

nn_1                         

  Low (L)   -1.21% -1.25% 6.08% -0.71 -2.50   -1.09% -0.94% 7.11% -0.46 -1.79 

  2   -0.36% -0.27% 5.06% -0.18 -0.65   -0.35% -0.25% 5.36% -0.16 -0.64 

  3   0.04% -0.02% 4.49% -0.01 -0.05   0.05% -0.19% 5.14% -0.13 -0.52 

  4   0.32% 0.34% 4.58% 0.26 0.94   0.33% 0.26% 4.72% 0.19 0.83 

  5   0.56% 0.44% 4.47% 0.34 1.23   0.56% 0.47% 4.72% 0.34 1.36 

  6   0.76% 0.63% 4.37% 0.50 1.85   0.76% 0.38% 4.70% 0.28 1.17 

  7   0.96% 0.85% 4.43% 0.67 2.50   0.96% 0.54% 4.50% 0.42 1.79 

  8   1.17% 1.06% 4.50% 0.82 3.07   1.17% 0.56% 4.71% 0.41 1.72 

  9   1.43% 1.39% 4.89% 0.98 3.71   1.43% 0.69% 5.18% 0.46 1.96 

  High (H)   1.92% 2.01% 5.14% 1.35 4.89   1.87% 0.99% 5.34% 0.64 2.77 

  H-L   3.13% 3.26% 2.91% 3.89 13.96   2.96% 1.94% 4.76% 1.41 5.89 

 

  

Electronic copy available at: https://ssrn.com/abstract=3640631



47 

Table 5 

Conditional alphas for expected return-sorted portfolios, 2000:01-2020:12 

This table presents conditional alphas [relative to the CAPM and the Fama and French (2015) five-factor model, extended by Carhart’s (1997) 
momentum factor (FF5M)] of decile portfolios based on the expected excess returns that are obtained from each machine learning model 

introduced in Section 4.2. Conditional alphas incorporate the beginning-of-month aggregate dividend yields to capture time variability in betas. 

The t-statistics (testing the null hypothesis that conditional alphas are zero) are calculated using the monthly point estimates, incorporating a 
Newey and West (1987) correction with four lags to account for possible autocorrelation in the alphas. In addition, the regression R2 metrics are 

reported. The numbers are presented for both equal- and value-weighted decile portfolios. The sample includes all firms that were publicly listed 

in one of the nineteen Eurozone countries in any given month during the January 1990-December 2020 sample period. The data coming from 
Thomson Reuters Datastream are collected on a monthly basis and, if currency-related, denominated in Euro. Market data are assumed to become 

public immediately, while fundamental data are assumed to be known four months after the fiscal year-end. 

      Equal-weighted   Value-weighted 

      aCAPM t(aCAPM) R2
CAPM aFF5M t(aFF5M) R2

FF5M   aCAPM t(aCAPM) R2
CAPM aFF5M t(aFF5M) R2

FF5M 

ols_full                             

  Low (L)   -1.35% -7.21 0.80 -1.43% -11.90 0.92   -1.02% -4.98 0.80 -0.65% -3.01 0.82 

  2   -0.56% -3.85 0.84 -0.73% -8.10 0.95   -0.41% -2.07 0.82 -0.29% -1.80 0.85 

  3   -0.21% -1.89 0.87 -0.41% -7.17 0.96   -0.28% -2.77 0.89 -0.31% -3.09 0.90 

  4   0.14% 1.21 0.86 -0.07% -1.15 0.96   0.02% 0.23 0.87 0.09% 0.85 0.89 

  5   0.19% 1.61 0.88 -0.08% -1.53 0.97   0.04% 0.37 0.88 0.02% 0.13 0.91 

  6   0.45% 4.20 0.87 0.18% 3.15 0.97   0.14% 1.43 0.90 0.04% 0.39 0.91 

  7   0.56% 4.62 0.86 0.28% 5.01 0.97   0.39% 3.43 0.86 0.24% 2.24 0.88 

  8   0.63% 5.68 0.88 0.37% 7.02 0.97   0.23% 2.48 0.90 0.16% 1.82 0.92 

  9   0.78% 5.94 0.85 0.48% 6.33 0.96   0.24% 1.88 0.86 0.10% 0.76 0.86 

  High (H)   1.32% 7.79 0.84 1.07% 8.92 0.94   0.26% 1.63 0.84 0.33% 1.93 0.86 

  H-L   2.67% 12.15 0.04 2.51% 12.10 0.09   1.27% 4.35 0.07 0.99% 2.95 0.14 

                                

ols_pars                             

  Low (L)   -1.45% -7.60 0.78 -1.46% -10.52 0.91   -1.13% -5.47 0.75 -0.67% -3.56 0.82 

  2   -0.60% -4.05 0.84 -0.75% -9.62 0.95   -0.44% -3.60 0.83 -0.30% -2.16 0.84 

  3   -0.30% -2.38 0.84 -0.47% -6.01 0.95   -0.37% -2.33 0.84 -0.27% -1.78 0.85 

  4   -0.04% -0.37 0.88 -0.25% -4.03 0.97   -0.10% -1.02 0.86 -0.08% -0.72 0.89 

  5   0.18% 1.96 0.88 -0.06% -0.84 0.96   0.04% 0.37 0.86 0.04% 0.32 0.88 

  6   0.38% 3.51 0.89 0.10% 1.59 0.97   0.25% 2.67 0.89 0.14% 1.12 0.90 

  7   0.50% 4.38 0.87 0.20% 4.25 0.96   0.15% 1.63 0.90 0.00% 0.01 0.90 

  8   0.76% 6.27 0.87 0.48% 8.10 0.97   0.26% 2.48 0.89 0.17% 1.67 0.89 

  9   1.02% 7.65 0.87 0.72% 10.07 0.96   0.17% 1.31 0.87 0.08% 0.55 0.87 

  High (H)   1.49% 9.77 0.83 1.16% 11.89 0.93   0.53% 4.37 0.83 0.26% 2.02 0.86 

  H-L   2.94% 14.31 0.00 2.62% 12.99 0.11   1.66% 6.13 0.00 0.93% 3.71 0.24 

                                

elanet                             

  Low (L)   -1.59% -8.37 0.79 -1.64% -12.70 0.93   -1.40% -5.76 0.79 -0.86% -3.55 0.84 

  2   -0.64% -4.73 0.84 -0.72% -7.30 0.94   -0.65% -4.31 0.84 -0.49% -3.42 0.86 

  3   -0.26% -2.04 0.87 -0.46% -6.28 0.96   -0.38% -3.21 0.87 -0.32% -2.47 0.88 

  4   0.12% 1.01 0.86 -0.11% -1.72 0.96   0.07% 0.67 0.86 0.13% 1.10 0.87 

  5   0.14% 1.34 0.87 -0.12% -2.07 0.96   -0.14% -1.29 0.89 -0.09% -0.89 0.90 

  6   0.32% 2.60 0.86 0.01% 0.13 0.96   0.20% 1.67 0.86 0.18% 1.82 0.88 

  7   0.57% 5.31 0.87 0.29% 5.29 0.97   0.22% 2.20 0.89 0.13% 1.44 0.89 

  8   0.75% 6.09 0.85 0.40% 5.52 0.96   0.27% 2.42 0.88 0.11% 0.90 0.89 

  9   1.01% 7.74 0.86 0.75% 9.68 0.95   0.46% 3.27 0.84 0.24% 1.71 0.85 

  High (H)   1.52% 9.77 0.84 1.27% 11.82 0.95   0.54% 3.35 0.83 0.42% 2.63 0.84 

  H-L   3.11% 16.76 0.02 2.91% 15.03 0.14   1.95% 6.13 0.10 1.28% 4.19 0.22 
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Table 5 (continued) 

Conditional alphas for expected return-sorted portfolios, 2000:01-2020:12 

pcr                             

  Low (L)   -1.60% -7.51 0.79 -1.62% -10.91 0.92   -1.30% -4.65 0.73 -0.83% -3.40 0.80 

  2   -0.59% -4.28 0.85 -0.67% -8.75 0.95   -0.62% -3.73 0.81 -0.18% -1.03 0.84 

  3   -0.29% -2.55 0.87 -0.46% -6.35 0.96   -0.30% -2.38 0.88 -0.07% -0.60 0.91 

  4   -0.04% -0.35 0.87 -0.29% -4.90 0.96   -0.14% -1.27 0.87 -0.19% -1.90 0.89 

  5   0.18% 1.88 0.88 -0.05% -1.00 0.97   0.05% 0.46 0.86 0.13% 1.32 0.87 

  6   0.42% 4.39 0.88 0.18% 4.03 0.96   0.10% 1.04 0.87 -0.04% -0.38 0.90 

  7   0.62% 4.95 0.85 0.30% 5.05 0.97   0.21% 1.76 0.86 -0.07% -0.62 0.88 

  8   0.68% 5.66 0.88 0.36% 5.70 0.97   0.20% 2.00 0.90 0.01% 0.06 0.91 

  9   0.99% 7.36 0.86 0.63% 8.82 0.96   0.43% 3.75 0.90 0.29% 2.66 0.91 

  High (H)   1.56% 9.23 0.84 1.28% 11.76 0.94   0.72% 5.02 0.84 0.54% 3.59 0.86 

  H-L   3.16% 13.90 0.01 2.91% 13.63 0.14   2.02% 5.42 0.05 1.37% 4.38 0.27 

                                

pls                             

  Low (L)   -1.68% -7.86 0.79 -1.71% -12.06 0.92   -1.59% -6.40 0.78 -1.21% -5.87 0.83 

  2   -0.57% -3.93 0.85 -0.70% -8.21 0.96   -0.60% -3.80 0.84 -0.42% -2.58 0.86 

  3   -0.26% -2.37 0.87 -0.44% -7.99 0.96   -0.27% -2.50 0.84 -0.01% -0.06 0.86 

  4   0.04% 0.41 0.87 -0.19% -2.78 0.96   -0.04% -0.39 0.90 0.00% 0.05 0.91 

  5   0.17% 1.65 0.87 -0.13% -1.96 0.96   -0.13% -1.47 0.89 -0.24% -2.71 0.91 

  6   0.39% 3.36 0.85 0.08% 1.59 0.97   0.28% 2.70 0.86 0.15% 1.32 0.89 

  7   0.60% 5.42 0.87 0.32% 5.54 0.96   0.26% 3.05 0.89 0.18% 2.10 0.89 

  8   0.75% 6.58 0.88 0.46% 6.93 0.97   0.31% 2.67 0.87 0.07% 0.65 0.88 

  9   0.95% 7.47 0.87 0.66% 7.71 0.96   0.26% 1.84 0.86 0.14% 1.08 0.87 

  High (H)   1.55% 9.13 0.83 1.30% 9.61 0.93   0.50% 3.34 0.82 0.35% 2.20 0.85 

  H-L   3.24% 14.10 0.00 3.01% 13.03 0.10   2.08% 6.48 0.10 1.56% 5.76 0.31 

                                

rf                             

  Low (L)   -1.58% -7.88 0.80 -1.59% -11.67 0.94   -1.11% -4.69 0.76 -0.91% -4.11 0.83 

  2   -0.67% -5.48 0.85 -0.74% -8.21 0.95   -0.77% -4.56 0.80 -0.52% -3.08 0.86 

  3   -0.23% -2.00 0.86 -0.48% -5.36 0.95   -0.30% -2.51 0.87 -0.22% -1.79 0.88 

  4   0.03% 0.30 0.87 -0.14% -1.97 0.95   0.00% 0.03 0.88 -0.03% -0.34 0.88 

  5   0.20% 1.60 0.86 -0.04% -0.76 0.96   0.13% 1.37 0.86 0.09% 0.87 0.87 

  6   0.40% 3.65 0.86 0.13% 2.21 0.96   0.34% 2.96 0.84 0.39% 3.11 0.85 

  7   0.57% 4.44 0.84 0.25% 3.37 0.95   0.25% 2.08 0.85 0.04% 0.34 0.87 

  8   0.70% 5.27 0.86 0.41% 5.70 0.95   0.27% 2.13 0.85 0.17% 1.65 0.86 

  9   0.99% 7.66 0.86 0.67% 9.76 0.96   0.30% 2.22 0.85 0.06% 0.44 0.86 

  High (H)   1.53% 8.75 0.82 1.19% 9.78 0.93   0.42% 1.90 0.81 0.24% 1.16 0.84 

  H-L   3.11% 14.87 0.10 2.79% 13.35 0.29   1.54% 4.89 0.04 1.15% 3.88 0.26 
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Table 5 (continued) 

Conditional alphas for expected return-sorted portfolios, 2000:01-2020:12 

gbrt                             

  Low (L)   -1.56% -7.70 0.79 -1.58% -11.63 0.93   -1.24% -6.24 0.80 -0.95% -5.10 0.87 

  2   -0.69% -5.50 0.86 -0.75% -9.55 0.95   -0.76% -5.29 0.79 -0.43% -2.30 0.81 

  3   -0.18% -1.64 0.86 -0.38% -5.59 0.96   -0.11% -0.90 0.86 -0.04% -0.29 0.86 

  4   -0.02% -0.13 0.86 -0.28% -4.08 0.96   -0.03% -0.26 0.84 -0.18% -1.38 0.86 

  5   0.12% 1.25 0.89 -0.11% -2.26 0.97   0.01% 0.14 0.87 -0.04% -0.32 0.88 

  6   0.34% 2.88 0.85 0.08% 1.34 0.96   0.07% 0.68 0.86 0.01% 0.10 0.86 

  7   0.56% 4.91 0.86 0.29% 4.82 0.96   0.10% 1.08 0.89 0.12% 1.25 0.90 

  8   0.79% 6.54 0.86 0.51% 8.49 0.96   0.25% 2.44 0.89 0.09% 0.85 0.90 

  9   1.01% 7.51 0.86 0.62% 8.97 0.96   0.58% 4.57 0.88 0.37% 3.37 0.90 

  High (H)   1.56% 9.24 0.84 1.27% 10.16 0.93   0.44% 2.35 0.83 0.19% 1.02 0.85 

  H-L   3.12% 14.35 0.03 2.85% 12.83 0.18   1.68% 5.66 0.02 1.13% 4.06 0.30 

                                

nn_1                             

  Low (L)   -1.66% -8.67 0.79 -1.59% -12.28 0.93   -1.42% -6.92 0.78 -0.79% -4.11 0.88 

  2   -0.61% -4.50 0.85 -0.65% -6.52 0.95   -0.60% -4.23 0.82 -0.34% -2.39 0.86 

  3   -0.32% -2.99 0.87 -0.50% -7.14 0.96   -0.51% -4.26 0.88 -0.33% -2.60 0.88 

  4   0.03% 0.27 0.88 -0.25% -3.33 0.96   -0.01% -0.05 0.85 -0.02% -0.12 0.86 

  5   0.14% 1.24 0.86 -0.12% -1.90 0.96   0.18% 1.39 0.85 0.23% 1.52 0.85 

  6   0.33% 3.12 0.87 0.08% 1.32 0.96   0.07% 0.62 0.86 0.01% 0.08 0.87 

  7   0.56% 5.21 0.87 0.27% 4.46 0.96   0.25% 2.41 0.88 0.12% 1.21 0.89 

  8   0.75% 5.56 0.86 0.45% 6.23 0.96   0.24% 1.98 0.85 0.16% 1.46 0.86 

  9   1.05% 7.15 0.85 0.73% 8.57 0.96   0.37% 2.89 0.85 0.09% 0.67 0.87 

  High (H)   1.67% 9.68 0.82 1.26% 11.58 0.94   0.67% 4.50 0.82 0.24% 1.80 0.86 

  H-L   3.33% 15.05 0.07 2.85% 14.02 0.38   2.09% 7.27 0.11 1.03% 4.60 0.52 
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Table 6 

Cumulative performance of long-only forecast portfolios with monthly restructuring, 2000:01-2020:12 

This table presents return and risk characteristics of the market portfolio and each machine learning portfolio introduced in Section 4.2. Portfolio 
values are scaled to €1 at the beginning of January 2000. The numbers are presented for long-only portfolios, for both the equal- and value-

weighting scheme, and both gross and net of transaction costs. The calculation of transaction costs and the choice of applied transaction costs are 

explained in Section 5.2.3. The sample includes all firms that were publicly listed in one of the nineteen Eurozone countries in any given month 
during the January 1990-December 2020 sample period. The data coming from Thomson Reuters Datastream are collected on a monthly basis 

and, if currency-related, denominated in Euro. Market data are assumed to become public immediately, while fundamental data are assumed to 

be known four months after the fiscal year-end. 

        mkt ols_full ols_pars elanet pcr pls rf gbrt nn_1 

Panel A: Equal-weighted                     

 Before transaction costs                     

    Terminal value [€]   2.77 48.65 70.29 78.33 86.29 86.22 81.96 88.05 107.18 

    Excess return annualized [%] 4.96 20.32 22.45 23.08 23.65 23.64 23.35 23.77 24.93 

    Std annualized [%]   16.21 19.86 18.20 18.97 19.07 18.54 18.66 18.81 17.82 

    Maximum drawdown [%] 60.32 55.34 51.24 48.63 56.27 52.12 49.33 48.48 50.12 

    Sharpe ratio   0.31 1.03 1.24 1.22 1.25 1.28 1.26 1.27 1.41 

    Information ratio     2.48 3.57 3.60 3.58 3.42 3.32 3.40 4.27 

                          

 Actual transaction costs [%]                     

    Avg PTO     39.54 27.17 36.24 34.80 33.33 32.82 33.95 31.18 

    Avg PHS     0.63 0.57 0.64 0.63 0.65 0.61 0.60 0.59 

    Avg PTC     0.24 0.16 0.23 0.23 0.22 0.20 0.21 0.18 

                          

 
Applied transaction costs [%]                     

    Avg PTC     0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 

                          

 After transaction costs                     

    Terminal value [€]   2.77 11.75 17.02 18.97 20.91 20.90 19.86 21.34 26.01 

    Excess return annualized [%] 4.96 12.45 14.45 15.04 15.58 15.57 15.29 15.69 16.79 

    Std annualized [%]   16.21 19.86 18.20 18.97 19.07 18.54 18.66 18.81 17.82 

    Maximum drawdown [%] 60.32 60.59 56.94 54.63 61.41 57.73 55.25 54.49 55.73 

    Sharpe ratio   0.31 0.63 0.80 0.80 0.82 0.84 0.82 0.84 0.95 

    Information ratio     1.21 1.94 2.01 2.04 1.95 1.87 1.94 2.53 
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Table 6 (continued) 

Cumulative performance of long-only forecast portfolios with monthly restructuring, 2000:01-2020:12 

Panel B: Value-weighted                     

 
Before transaction costs                     

    Terminal value [€]   1.67 3.58 6.00 6.80 11.08 6.47 5.47 5.32 8.40 

    Excess return annualized [%] 2.47 6.26 8.90 9.56 12.13 9.30 8.43 8.29 10.67 

    Std annualized [%]   16.12 20.94 17.39 19.40 19.56 19.29 22.22 20.79 18.50 

    Maximum drawdown [%] 54.62 67.26 44.25 52.77 55.77 60.60 61.15 56.99 48.87 

    Sharpe ratio   0.15 0.30 0.51 0.49 0.62 0.48 0.38 0.40 0.58 

    Information ratio     0.39 0.91 0.86 1.13 0.75 0.53 0.62 1.06 

                          

 
Actual transaction costs [%]                     

    Avg PTO     45.98 29.59 44.58 41.48 39.41 41.29 36.66 37.29 

    Avg PHS     0.17 0.14 0.16 0.18 0.18 0.22 0.18 0.15 

    Avg PTC     0.09 0.05 0.08 0.08 0.07 0.09 0.07 0.06 

                          

 
Applied transaction costs [%]                     

    Avg PTC     0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 

                          

 
After transaction costs                     

    Terminal value [€]   1.67 0.85 1.43 1.62 2.65 1.55 1.30 1.27 2.01 

    Excess return annualized [%] 2.47 -0.76 1.72 2.34 4.76 2.10 1.27 1.14 3.38 

    Std annualized [%]   16.12 20.94 17.39 19.40 19.56 19.29 22.22 20.79 18.50 

    Maximum drawdown [%] 54.62 71.23 52.00 61.29 59.84 66.50 64.76 65.17 53.53 

    Sharpe ratio   0.15 -0.04 0.10 0.12 0.24 0.11 0.06 0.06 0.18 

    Information ratio     -0.33 -0.10 -0.02 0.27 -0.04 -0.11 -0.14 0.12 
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Table 7 

Classification performance of forecast portfolios with monthly restructuring, 2000:01-2020:12 

This table shows the confusion matrices, together with a broad set of classification measures, of selected machine learning models, i.e., the nn_1 

model introduced in Section 4.2, and the svm model introduced in Section 6.1. In a two-class scenario, accuracy is 
#(𝑇𝑃+𝑇𝑁)

#(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)
, sensitivity is 

#𝑇𝑃

#(𝑇𝑃+𝐹𝑁)
, and specificity is 

#𝑇𝑁

#(𝑇𝑁+𝐹𝑃)
. Multi-class classification metrics are derived as follows: Separately for each class, the binary one-against-

all approach is used to compute hypothetic two-class numbers. It considers the class under investigation as 1, and all remaining classes as 0. 

Aggregate metrics are then calculated as the weighted average of each class’ individual metric, taking the number of realized cases within each 
class as weights. AccuracyNIR is the accuracy of a random classifier (no-information rate) and p-statistic (Acc > AccNIR) tests the null hypothesis 

that the actual accuracy is equal to the no-information rate. The sample includes all firms that were publicly listed in one of the nineteen Eurozone 

countries in any given month during the January 1990-December 2020 sample period. The data coming from Thomson Reuters Datastream are 
collected on a monthly basis and, if currency-related, denominated in Euro. Market data are assumed to become public immediately, while 

fundamental data are assumed to be known four months after the fiscal year-end. 

      Decile-specific statistics [%]   Aggregate statistics [%] 

Support vector machine (svm) 

      Realized       

      Low (L) 2 3 4 5 6 7 8 9 High (H)       

    Low (L) 6,086 3,240 2,378 2,057 1,919 1,780 1,720 1,875 2,077 3,422       

  

P
re

d
ic

te
d
 

2 3,660 3,014 2,841 2,616 2,531 2,394 2,227 2,159 2,346 2,734       

  3 2,939 2,914 2,841 2,760 2,816 2,621 2,538 2,321 2,394 2,352       

  4 2,440 2,717 2,852 2,917 2,867 2,797 2,669 2,581 2,403 2,233       

  5 2,152 2,576 2,792 2,851 2,885 2,842 2,766 2,722 2,544 2,324       

  6 1,932 2,579 2,730 2,860 2,836 2,920 2,962 2,793 2,712 2,109       

  7 1,879 2,423 2,620 2,853 2,824 2,899 2,991 2,925 2,749 2,242       

  8 1,723 2,386 2,620 2,718 2,725 2,874 2,958 3,035 2,965 2,372       

  9 1,869 2,380 2,527 2,549 2,621 2,789 2,859 3,035 2,939 2,784       

    High (H) 1,874 2,293 2,295 2,295 2,430 2,517 2,715 2,930 3,223 3,752       

                                

  
Accuracy 

(balanced) 
  57.16 50.74 50.39 50.56 50.50 50.58 50.74 50.85 50.66 52.39   Accuracy 12.63 

                            AccuracyNIR 10.04 

                            
p-statistic 

(Acc > AccNIR) 
0.00 

  Sensitivity   22.92 11.36 10.72 11.02 10.91 11.05 11.33 11.51 11.15 14.25   Sensitivity 12.62 

  Specificity   91.39 90.12 90.06 90.10 90.09 90.12 90.16 90.19 90.16 90.52   Specificity 90.29 

                                

Neural network (nn_1) 

      Realized       

      Low (L) 2 3 4 5 6 7 8 9 High (H)       

    Low (L) 5,235 3,092 2,623 2,489 2,282 2,145 1,958 1,921 2,007 2,802       

  

P
re

d
ic

te
d
 

2 3,384 2,973 2,760 2,739 2,743 2,598 2,417 2,202 2,244 2,462       

  3 2,834 2,824 2,877 2,836 2,813 2,640 2,620 2,426 2,385 2,241       

  4 2,551 2,658 2,781 2,805 2,733 2,783 2,680 2,619 2,523 2,343       

  5 2,310 2,675 2,704 2,719 2,814 2,817 2,809 2,766 2,607 2,233       

  6 2,121 2,570 2,727 2,762 2,799 2,818 2,869 2,794 2,705 2,268       

  7 2,029 2,541 2,604 2,696 2,726 2,774 2,824 2,930 2,854 2,427       

  8 1,982 2,492 2,594 2,640 2,649 2,774 2,802 2,903 2,919 2,621       

  9 2,029 2,357 2,545 2,501 2,573 2,637 2,753 2,929 2,923 3,105       

    High (H) 2,079 2,340 2,281 2,289 2,322 2,447 2,673 2,886 3,185 3,822       

                                

  
Accuracy 

(balanced) 
  55.38 50.65 50.46 50.32 50.35 50.37 50.39 50.57 50.62 52.53   Accuracy 12.10 

                            AccuracyNIR 10.04 

                            
p-statistic 

(Acc > AccNIR) 
0.00 

  Sensitivity   19.71 11.21 10.86 10.59 10.64 10.66 10.69 11.01 11.09 14.52   Sensitivity 12.10 

  Specificity   91.04 90.10 90.07 90.05 90.06 90.08 90.09 90.14 90.16 90.55   Specificity 90.23 
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Table 8 

Cumulative performance of long-only forecast portfolios with monthly restructuring, 2000:01-2020:12 

This table presents return and risk characteristics of selected machine learning portfolios, i.e., based on the ols_pars and nn_1 models introduced 
in Section 4.2, and based on the svm model introduced in Section 6.1. Portfolio values are scaled to €1 at the beginning of January 2000. The 

numbers are presented for long-only portfolios, for both the equal- and value-weighting scheme, and both gross and net of transaction costs. The 

calculation of transaction costs and the choice of applied transaction costs are explained in Section 5.2.3. The sample includes all firms that were 
publicly listed in one of the nineteen Eurozone countries in any given month during the January 1990-December 2020 sample period. The data 

coming from Thomson Reuters Datastream are collected on a monthly basis and, if currency-related, denominated in Euro. Market data are 

assumed to become public immediately, while fundamental data are assumed to be known four months after the fiscal year-end. 

        Equal-weighted   Value-weighted 

        ols_pars nn_1 svm   ols_pars nn_1 svm 

 Before transaction costs                 

    Terminal value [€]   70.29 107.18 113.57   6.00 8.40 9.07 

    Excess return annualized [%] 22.45 24.93 25.28   8.90 10.67 11.07 

    Std annualized [%]   18.20 17.82 18.36   17.39 18.50 18.85 

    Maximum drawdown [%] 51.24 50.12 51.80   44.25 48.87 45.87 

    Sharpe ratio   1.24 1.41 1.38   0.51 0.58 0.59 

    Information ratio   3.57 4.27 4.33   0.91 1.06 1.11 

                      

 
Actual transaction costs [%]                 

    Avg PTO   27.17 31.18 34.23   29.59 37.29 38.61 

    Avg PHS   0.57 0.59 0.54   0.14 0.15 0.14 

    Avg PTC   0.16 0.18 0.19   0.05 0.06 0.06 

                      

 
Applied transaction costs [%]                 

    Avg PTC   0.57 0.57 0.57   0.57 0.57 0.57 

                      

 
After transaction costs                 

    Terminal value [€]   17.02 26.01 27.57   1.43 2.01 2.17 

    Excess return annualized [%] 14.45 16.79 17.11   1.72 3.38 3.76 

    Std annualized [%]   18.20 17.82 18.36   17.39 18.50 18.85 

    Maximum drawdown [%] 56.94 55.73 57.44   52.00 53.53 50.82 

    Sharpe ratio   0.80 0.95 0.94   0.10 0.18 0.20 

    Information ratio   1.94 2.53 2.59   -0.10 0.12 0.17 
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Figures 

Figure 1 

Between-models comparison of model complexity over time, 1990:01-2020:12 

This figure presents the model complexity of selected machine learning models, i.e., the elanet, pcr, pls, rf, and gbrt models introduced in Section 

4.2, at each re-estimation date. As the models pertain to different families, the model complexity measure varies: the number of non-zero 
regression coefficients (for elanet), the optimal number of components included in the predictive regression (for pcr and pls), and the optimal 

depth (for rf) or the number of unique split variables (for gbrt) of the regression trees. The sample includes all firms that were publicly listed in 

one of the nineteen Eurozone countries in any given month during the January 1990-December 2020 sample period. The data coming from 
Thomson Reuters Datastream are collected on a monthly basis and, if currency-related, denominated in Euro. Market data are assumed to become 

public immediately, while fundamental data are assumed to be known four months after the fiscal year-end. 
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Figure 2 

Model-specific relative variable importance, 1990:01-2020:12 

This figure depicts the time series average of relative variable importance measures of each machine learning model introduced in Section 4.2, 

which are calculated based on a two-step approach: First, we compute the absolute variable importance as the reduction in R2 from setting all 
values of a given predictor to zero within the training sample. Second, we normalize absolute variable importance measures to sum to 1, signaling 

the relative contribution of each variable to a model. The sample includes all firms that were publicly listed in one of the nineteen Eurozone 

countries in any given month during the January 1990-December 2020 sample period. The data coming from Thomson Reuters Datastream are 
collected on a monthly basis and, if currency-related, denominated in Euro. Market data are assumed to become public immediately, while 

fundamental data are assumed to be known four months after the fiscal year-end. 
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Figure 3 

Between-models comparison of relative variable importance, 1990:01-2020:12 

This figure presents a heat map of the average relative variable importance ranks of each machine learning model introduced in Section 4.2, 

which are obtained by ranking the relative contribution of each variable within a specific model, and summing the ranks across all models to 
obtain an overall rank (higher variable importance = higher rank). The rows are sorted in descending order based on overall rank. Darker cell 

colours denote greater importance for the respective variable to the model. The relative variable importance metrics are calculated based on a 

two-step approach: First, we compute the absolute variable importance as the reduction in R2 from setting all values of a given predictor to zero 
within the training sample. Second, we normalize absolute variable importance measures to sum to 1, signaling the relative contribution of each 

variable to a model. The sample includes all firms that were publicly listed in one of the nineteen Eurozone countries in any given month during 

the January 1990-December 2020 sample period. The data coming from Thomson Reuters Datastream are collected on a monthly basis and, if 
currency-related, denominated in Euro. Market data are assumed to become public immediately, while fundamental data are assumed to be known 

four months after the fiscal year-end. 
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Figure 4 

Relative variable importance over time, 1990:01-2020:12 

This figure shows the relative variable importance ranks of an examplary selected machine learning model, i.e. the ols_pars model introduced in 

Section 4.2, at each re-estimation date, which are obtained by ranking the relative contribution of each variable within a specific model (higher 
variable importance = higher rank). The relative variable importance metrics are calculated based on a two-step approach: First, we compute the 

absolute variable importance as the reduction in R2 from setting all values of a given predictor to zero within the training sample. Second, we 

normalize absolute variable importance measures to sum to 1, signaling the relative contribution of each variable to a model. The sample includes 
all firms that were publicly listed in one of the nineteen Eurozone countries in any given month during the January 1990-December 2020 sample 

period. The data coming from Thomson Reuters Datastream are collected on a monthly basis and, if currency-related, denominated in Euro. 

Market data are assumed to become public immediately, while fundamental data are assumed to be known four months after the fiscal year-end. 
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Figure 5 

Cumulative performance of expected return-sorted portfolios with monthly restructuring, 2000:01-2020:12 

This figure depicts the performance (logarithmic scale) of the market portfolio and each machine learning portfolio introduced in Section 4.2. 

Portfolio values are scaled to €1 at the beginning of January 2000, and presented for long- and short-only portfolios, for both the equal- and 
value-weighting scheme, and gross of transaction costs. The calculation of transaction costs and the choice of applied transaction costs are 

explained in Section 5.2.3. The sample includes all firms that were publicly listed in one of the nineteen Eurozone countries in any given month 

during the January 1990-December 2020 sample period. The data coming from Thomson Reuters Datastream are collected on a monthly basis 
and, if currency-related, denominated in Euro. Market data are assumed to become public immediately, while fundamental data are assumed to 

be known four months after the fiscal year-end. 

 

  

         

 

 

         

            

Panel A: Equal-weighted cumulative performance 

Panel B: Value-weighted cumulative performance 
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Appendix A 

Table A1 

Details on forecast models 

This table presents the definitions and specifications of hyperparameters of each machine learning model introduced in Section 4.2. 

      Hyperparameter Specification Definition 

ols_full         

      None     

            

ols_pars         

      None     

            

elanet         

      λ (0,1) General strength of the penalization 

      p {0,0.5,1} Weight on the lasso and ridge penalization 

            

pcr         

      numbercomp {1,…,P} Number of components included in the predictive regression 

            

pls         

      numbercomp {1,…,P} Number of components included in the predictive regression 

            

rf         

      L {1,2,3,4,5,6} Depth of the single regression trees 

      M {22,33,44} Number of predictors randomly considered as potential split variables 

      B (10,1000) Number of trees added to the ensemble prediction 

            

gbrt         

      L {1,2,3} Depth of the single regression trees 

      v {0.01,0.05,0.1} Weight for the learning rate shrinkage 

      B (10,1000) Number of trees added to the ensemble prediction 

      

 nn_1 -nn_5       

      sizebatch 1000 Batch size 

      numberepochs 100 Number of epochs 

      patience 25 
Number of iterations during which the MSFE is allowed to increase in the 

validation sample 

      dropout rate 0.25 Fractional rate of input variables that are randomly set to zero at each iteration 

   ensemble 10 
Number of independent seeds used for each specification family at each re-
estimation date 

      

svm         

      c {0.01,0.05,0.1,0.5,1} Vector influence 

       γ {0.01,0.05,0.1,0.5,1} Misclassification costs 
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Appendix B 

Figure B1 

Stylized visualizations | Neural networks 

This figure depicts four stylized visualizations that help explain the structure, functioning, and regularization of neural networks. 

Panel A: Neural network architecture Panel B: Activation function 

 

 

Panel C: Univariate optimization (learning rate shrinkage) Panel D: MSFE in training and validation sample (early stopping) 

  

 

 

 

 

 

 

 

 

Table B1 

Stylized visualizations | Classification results 

This figure depicts a stylized visualization that helps explain the procedure to measure the performance of multi-class classifications. Both 

scenarios exhibit the same 30% accuracy, but the predictions in scenario A differ from their realizations more strongly than in scenario B (see 
Section 6.1). 

   Scenario A      Scenario B 

   Realized      Realized 

   1 2 3    1 2 3 
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