Ranking System Optimizer Tutorial

- 1. <u>Preparing Piotroski For Optimization</u>
- 2. <u>Setting Up An Optimizer Study</u>
- 3. Using EXCEL With The Ranking System Optimizer
- 4. Pruning Nodes From The Ranking System
- 5. <u>The Final Ranking System</u>

Ranking System Optimizer (Advanced)

- 1. <u>Advanced Ranking System Optimization</u>
- 2. <u>Restructuring The Advanced Ranking System</u>
- 3. EXCEL Spreadsheet Rev 2

Ranking System Conditional Nodes

- 1. Using the The Portfolio123 Conditional Node
- 2. Conditional Node Versus Eval (...) Function
- 3. <u>The Problem With Conditional Nodes</u>

Ranking System Design

October 26, 2013

I am about to embark on a new project that will set the course of my future stock portfolio development efforts. This effort is to create a brand new ranking system using all of the latest information and strategies I have collected over the last several months. I would like to invite readers to follow along so as to understand the thought/development process that has gone into this new project. While I will provide a detailed account of my activities, the actual (fundamental) stock factors will be left to the imagination

(sorry - this is my livelihood).

There are (at least) two methods used to design a stock port/simulation. The first method depends on pre-existing ranking system(s). A stock simulation is designed and optimized using the ranking system, some buy/sell rules are put in place, and perhaps some sort of stop-loss and/or hedging. The developer

may have a target stock universe in mind but in the end, the universe is customized to give the "best", or should I say the "most optimized" results. There are several iterative optimization steps that usually occur, including selection of the "best" ranking system, tweaking the ranking system for optimal backtest results, tweaking the buy/sell rules and re-visiting the custom universe, all in the name of designing the "best" or "most optimized" simulation. The universe is quite often customized by setting limits on Market Cap and other parameters. Thus whatever the initial target stock universe eventual gets adjusted until there is a happy compromise between stock universe, ranking system, and backtest performance.

The second method for designing a stock portfolio is to start with a set of criteria, then providing an optimal design to meet that criteria. The ranking system is the heart of the system and is designed from scratch to meet the desired specifications.

There may be some merits to the first design method, it is certainly faster, and the ranking system may be "proven" by other stock models in use. But there will always be some doubt in my mind as to whether the customized universe is a form of cherry picking, or data mining. It is not my place or intent to provide a determination of whether this method of development is satisfactory and I will leave it up to the reader to decide for him/her self. This series of posts will be about the design of a new ranking system from scratch to match the developers specifications and will cover the following topic outline:

- Specifying the target stock universe
- Stock factor discovery
- Test environment
- Discovery process
- Stock factor selection process
- Ranking system optimization
- Using the Portfolio123 RS optimizer
- Out of sample verification
- Stock port/simulation using the new ranking system*

* This last step is proof that the effort was worthwhile. You can end up with the best looking Ranking System performance chart but if you can't practically use it then it isn't much good.

This will be a very aggressive design for a dynamic ranking system that is intended to adjust for interest rates. I don't know at this point in time whether I will be successful or not. It is a quest, not a "here's how I did it" exercise. The reader is asked for understanding in this matter.

Selecting The Target Stock Universe

October 27, 2013

As I outlined in the last post (overview), I will be performing several steps in this design-from-scratch ranking system project. This post describes the first stage of the design process and is the most straightforward. There are four items I am going to consider for the target universe:

- 1. Choice of standard Portfolio123 universe
- 2. Minimum liquidity
- 3. Minimum stock price
- 4. Ranking system design process

Choice of Standard Portfolio123 Universe

Since this is a brand new process I am inventing, I have decided to go with a fairly broad universe. I don't like Over-the-counter (OTC) stocks and I also don't want Master Limited Partnerships (MLPs). Therefore, my decision is to use the S&P 1500. All stocks in this universe are listed on a major US exchange with (I believe) no MLPs and all companies are either U.S. companies or international companies with headquarters in the U.S. For me this is preferable to trying to filter out Chinese companies, a rather difficult task.

Liquidity

I normally design very high liquidity models with at least \$5M \$Volume per day, sometimes a lot higher. For this project I am going to drop my requirement down to \$2M \$Volume per day. The lower \$Volume should give this ranking system better performance than I am accustomed to. My portfolio design will use a buy rule of AvgDailyTot(60)>2,000,000 (minimum \$2M \$Volume per day on average). But this is an *average*, and the filter only applies to the days preceding the trade, not the actual day of trade so one has to expect that the \$Volume could be lower, either on trade day or while the stock is held. Thus my target universe will be set to \$1M, allowing stock liquidity to bounce around a little bit without dropping out of the universe.

Minimum Stock Price

I like to work with a minimum stock price of \$2. I find that this price gives very good performance in stock simulations without too much compromise on stock volatility. I know most R2G models buy stocks down to \$1 but I don't wish to go down that low. That is my personal preference and I don't care to try to justify it. If a developer is comfortable with buying stocks at \$1 then that is OK. You should keep in mind however that the stock price may drop down to penny stock status, and possibly fall off the exchange it is listed on.

So, if I set the minimum stock price at \$2 as a portfolio buy rule then I will need to test below this price as the stock price may drop below \$2. For example, I don't want to buy at \$2 and have to sell the next week because the stock price dropped to \$1.95. So I am going to set my minimum stock price for this exercise at \$1.50 in the target universe. As a general rule, I require the closing price to be above \$1.50 and also a 60 day moving average to be above \$1.50. The moving average requirement is to prevent stocks with an unusual price around the lower price from being bought.

One additional check that I like to include is to make sure the stock has been around for awhile i.e. no IPOs. For this filter I useClose(500)>1.

Ranking system design process

As a developer, I need to have a basic understanding of the ranking system design process up front. This is important because I want to know how many stocks will be in each ranking bin which determines the reliability for the entire process.

The first step is to enter all of the rules for the target universe into a screen as shown in the figure below. The most recent date shows a total of 1440 stocks in the target universe. By sampling various dates, I found a minimum of 1233 stocks at one point. For the purpose of this analysis I am going to assume a minimum of 1200 stocks in the target universe, a little more conservative than the minimum number that I had found by sampling.

Out of curiosity I decided to repeat this experiment using the Buy rules for a potential port as shown in the figure below. By sampling different dates, I found a minimum of 1100 stocks that fulfilled the rules. As liquidity has increased over the years, my conclusion is that I could expect at least 1100 stocks that will meet portfolio liquidity buy rules at any given point in time in the future.

Now getting back to the target universe analysis...

I will be analyzing the 10 sectors independently, and testing with odd/even stock IDs. Therefore, individual test universes have a minimum of (1200 / 10) / 2 = 60 stocks each. I generally test at a rank of 80 and higher, therefore I will be testing 20% of each test universe or 60/5*0.2 = 12 stocks. I don't know if this will be a sufficient number of stocks for test but I am going to proceed with this. If I run into trouble there are some workarounds that I could use - I can't explain just now as I would be getting ahead of myself.

Below is a snapshot of the Test Universe with one sector specified. Already I am below my estimate of 60 stocks in each test universe as I forgot to consider the variation in number of stocks between each sector. Anyways, I will proceed on while keeping a close eye on this issue. Note that I chose the Even stock-IDs as there are more stocks than the odd stock-IDs by ~50 stocks.

Stock Factor Discovery

October 27, 2013

At this stage of my development process, I want to find the best stock factors to use for the target universe (see previous post). For this purpose I have assembled a list of 107 stock factors. When I talk about "stock factors", I really mean "stock formulae" as I don't make a distinction between the two.

The 107 factors are located in a spreadsheet located here:

The spreadsheet has five worksheets and the second last sheet lists the factors. They are labeled FACT01, FACT02, FACT03,, FACT107. Labels in **red** signify that "lower is better". And labels in black signify that "higher is better".

NOTE: I have just given everyone the stock factors that I use for free. I would appreciate it if you could provide me with any additional factors that you find useful. You can use the contact form to send me any additional factors.

While I am at it, I might as well explain how the stock factor discovery process will be performed and how the spreadsheet calculates the best stock factors. I am going to test each factor individually using the screen backtester and target universe. The most recent 10 years are tested with a rebalance frequency of 3 months. This is certainly a brute force approach and is extremely time consuming but the results are worth it.

Sheet 5 (RawData)

This is where the backtester raw results are deposited, starting with the stock universe. The backtester is executed 108 times, the first time the target universe is tested as is. The backtest results are downloaded and the date plus Ret% fields are copied/pasted into factor discovery spreadsheet as shown below.

А	- Aleren	C.	D	. E	F	G	- H	Loud II	1	. K	and been	M	N	0		1
	Screen Dt	Rank Dt	Price-br>	Pos	New-br+F	Sold+br>P1	Turn	Ret%	Bench%	Excess%	\$108+br>11	\$100 in-br	Costs	Cash	ħ	A
. 59	3/16/13	3/16/13	3/18/19	-42	1	1	2.081	2,4143	4.4913	-2.067	374.7799	132.6553	0		0	ŝ
-58	12/15/12	12/15/12	12/17/12	42	0	0	0	11.9162	10.4107	1.5054	365.9448	126.9656	D		0	ł
57	9/15/12	9/15/12	9/17/12	42	1	1	2.981	1.3271	-3.5403	4.8674	226DOW	nload	backte	st	0	5
56	6/16/12	6/16/12	6/18/12	Date	column	8	0	18.2316	9.1626	9.0000	Tres	ults a	nd cop	V	0	
55	3/17/12	3/17/12	3/19/12	42	0	1	1.726	-12.0209	4.3976	-7.6233	the	se col	umns	1	0	5
54	12/17/11	12/17/11	12/19/11		3	1	2.439	13,4833	15.1204	1.6372	310 (11)	rst ru	n only	1	0	1
53	9/17/11	9/17/11	9/19/11	41	0	0	0	2.7242	0.3903	2.3333	273		-		0	ŝ
52	6/18/11	6/18/11	6/28/11	41	3	8	0	-9.1215	-4.4444	-4.6771	266.1212	98.8415	0		0	ŝ.
- 51	3/19/11	3/19/11	3/21/11	34	0	0	0	-0.7509	-0.7919	0.041	292,8318	103.4387	0		0	2
50	12/18/10	12/18/10	12/20/10	38	6. 1 5	1	2.6316	4.8325	2.881	1.9515	295.0473	104.2644	0		0	ŝ
- 49	9/18/10	9/18/10	9/20/10	34	1	0	0	16.496	10.5799	5.9051	281.4454	101.3447	0		0	
48	6/19/10	6/19/10	6/21/10	37	2)	1	2.7778	0.0057	Targe	t Univ	erse 3	1.6484	0		0	-
47	3/20/10	3/20/10	3/22/10	36	0	0	0	5.9967	month	retur	ne	1.3409	0		0	2
46	12/19/09	12/19/89	12/21/09	36	6 1	8	0	8.0225				4.1443	0		0	i,
45	9/19/03	9/19/09	9/21/09	.35	0	1	2.7778	7.3734	4.2716	3.1018	211.004	89.9189	0		0	1
- 44	6/20/09	6/20/09	6/22/09	36	2	0	0	36.6881	16.4407	20.2474	196.5142	86.2353	0		0	
43	3/21/09	3/21/09	3/23/09	34	0	3	8.1081	42,0911	15.3611	26.7201	143.7683	74.0594	0		0	i.
42	12/20/08	12/20/08	12/22/08	:37	f 1	0	0	-14.6574	-11.1659	-3.4915	101.1875	64.1979	0		0	ŝ,
41	9/20/08	9/20/00	9/22/08	36	2 3	0	0	-39.1034	-28.698	-10,4054	118.5662	72.2672	0		0	ż
40	6/21/08	6/21/08	6/23/08	33	2	1	3.125	1.3302	-5.7836	7.1139	194.701	101.3537	0		0	i.
- 39	3/22/08	3/22/08	3/24/08	32	2	0	0	5,9062	-0.849	6.7542	192.145	107.5755	0		0	÷.
38	12/22/07	12/22/07	12/24/07	30	2	0	0	12.5535	-10.2939	-2.2596	181.4295	108.4955	0		0	1
707	a/hh	۹/۲۲/07 (1) در (1)	9/74/07		n n		0	-4 199	-7.4959		207.4749	120.94%	n,	<u>i - 1</u>	n	1

	DE2	• (*	fx	-6.793	8		
1	A	В	0		D	E	F
1	Date	Universe	FACT01		FACT02	FACT03	FACT04
2	8/18/13	-1.0832	1	-7.6115	-2,7182	-3,5564	-2.2799
3	12/17/12	8.5734		-1.1235	6.5837	8.518	6.3391
4	9/17/12	0.1968		•7.7296	-2.2908	-3.0896	-5.9974
5	5/18/12	12.0675	1	18.4566	19.2475	15.4506	15.7684
6	8/19/12	-9.0868	-	13.5784	-11.8479	-14.9461	-12.2533
7	12/19/11	15.6833		13.0435	Pesult	s from b	acktest
8	9/19/11	0.0722	-	10.1042	Tof ont	ine unit	ackcest
9	5/20/11	-9.0545	-	4.8325	or ent.	tre univ	erse.
10	8/21/11	-2.9297		-1.0511	2.4476	-10.5237	-3.1038
11	12/20/10	2.4799	1	-1.8743	4.6632	3.7942	1.952
12	9/20/10	14.9915	1	20.5674	16.2391	19.0474	15.8877
13	5/21/10	3.9684		16.0196	12.2438	1.801	0.6567
14	8/22/10	-0.7708		-6.2173	-12.7568	4.7373	0.9259
15	12/21/09	4.9073		0.5696	2.7819	3.5772	4.831
16	9/21/09	3.2418		2.2954	3.3858	2.0914	4.1145
17	5/22/09	26.6321		7.5978	28.0455	16.3085	6.1757
18	8/23/09	39.1265	1	18.6938	81.5908	21.5032	15.7784
19	12/22/08	-8.691		9.3324	-4.8771	-2.6355	1.0808
20	9/22/08	-37.3643	2	43.7325	-44.9022	-47.0565	-29.1237
21	5/23/08	-3.3078	-	24,4237	-27.9967	-21.3266	-15.1177

For the 2nd to 108th run, only the Ret% field is cut/pasted into the factor discovery spreadsheet. For these runs, each stock factor is tested individually by using a ranking system with one factor only. The screen has one Rule: **Rank>80**.

'FACTO1 80-10	00' Backte	st Results	đ											
Screen Dt	Rank Dt	Price	#Pos	New 1 Pos	Sold Turn	Retti	Bench%	Excess% ,	\$100	\$100 in c	ists Cest	Min %	Max %	StdDev
59 06/15/13	06/15/1	3 06/17/13	8	0	0 0%	9.73%	4.74%	-14:47%	\$304.4	\$138.9 \$0	.00 \$0.0	-35.95%	12.71%	16.37%
58 03/16/13	03/16/13	3 03/18/13	8	1	1 12%	2.27%	4.48%	-2.31%	\$337.2	\$132.7 \$0	00 \$-0.0	-15.31%	12.33%	9.32%
57 12/15/12	12/15/12	2 12/17/12	: 0	1	1 12%	6.38%	10.41%	-4.03%Z	nd to	108th	backt	est:	17.95%	10.04%
56 09/15/12	09/15/13	2 09/17/12	8	1	1 12%	1.42%	-3.54%	dasaid	ownloa	ad the	resul	ts i	16.88%	10.12%
55 00/10/12	02/12/11	2 06/18/12		- 1	1 12%	15.95%	9.15%	1.79%3	nd cop	py the	Ret*	53	10.00%	13.84%
53 12/17/11	12/17/1	1 12/19/11	8	- 2	2 25%	7.25%	15.12%	-7.87%	olumn			10	42.89%	22.82%
52 09/17/11	09/17/1	1 09/19/11	8	0	0 0%	-1.41%	0.39%	-1.80%	\$272.9	\$99.2 \$0	.08 \$-0.0	-34.36%	18.72%	15.59%
51 06/18/11	06/18/1	1 05/20/11	8	1	0 0%	-0.25%	-4,44%	4.20%	\$276.0	\$98.8 \$0	.00 \$0.0	-29.95%	29.27%	17.78%
50 03/19/11	03/19/1	1 03/21/11	7	1	1 14%	3.50%	-0.79%	4.29%	\$277.5	\$103.4 \$0	0.02 00.0	-14.32%	18.36%	12.08%
49 12/18/10	12/18/10	0 12/20/10	7	1	1 14%	4.88%	2.88%	2.00%	\$268.1	\$104.3 \$0	.00 \$-0.0	-13.85%	22.07%	11.93%
48 09/18/10	09/18/10	0 09/20/10	1 7	1	1 14%	15.58%	10.58%	5.00%	\$255.7	\$101.3 \$0	00 \$-0.0	-4.70%	29.37%	11.87%
46.03/20/10	03/20/10	0 03/22/10			2 29%	12.31%	-2.98%	15 29%	\$212.5	\$91.0 \$0	00 \$-0.0	-10.9676	27.60%	13 18%
45 12/19/09	12/19/0	9 12/21/09	1 7	2	1 17%	5.10%	4.70%	0.41%	\$189.2	\$94.1 \$0	00 \$0.0	-19.23%	42.07%	19.64%
44 09/19/09	09/19/0	9 09/21/09	6	0	1 14%	4.09%	4.27%	9.82%	\$180.1	\$89.9 \$0	.00 \$-0.0	1.45%	25.76%	8.60%
43 06/20/09	06/20/0	9 06/22/09	1. 7	2	1 17%	6.04%	16.44%	9.60%	\$157.8	\$86.2 \$0	.00 \$0.0	1.34%	51.19%	18.16%
42 03/21/09	03/21/09	9 03/23/09	6	2	3 43%	35.97%	15.36%	21.61%	\$125.2	\$74.1 \$0	.00 \$-0.0	-8.34%	78.96%	44.38%
41 12/20/08	12/20/04	8 12/22/08	7	1	1 14%	2.90%	-11.17%	14.07%	\$91.4	\$64.2 \$0	00 \$0.0	-35.41%	78.68%	38.49%
10 05/21/08	05/21/0	8 09/22/08	6	1	0 0%	0.36%	-5 70%	-23.00%	\$196.1	\$101.4 \$0	00 \$-0.0	.39 064	40.03%	10.4/1%
38 03/22/08	03/22/0	8 03/24/08	6	2	1 20%	11.44%	-0.85%	12.29%	\$205.3	\$107.6 \$0	00 \$-0.0	-12.89%	50,69%	23.51%
Dete	the		CACT	-	2.1213	CACTO:		CACTO		FACTOR		CTOF	FAC	
2/10/12	Ollive	1.0000	AU	01	7 6110	FACIDA	3 71 03	FACIUS	o ceca	FACIDA	700	7 611	FAC	7 6110
3/18/15		0.5704	-		1.1.225		·2./102		3.3364	-2.4	122	-7.011	0	- 1.011:
12/1//12		8.3/34		- 22	1.1235		6.583/		8.518	6.4	391	11.208	5	0.197.
9/1//12		0.1968			7.7296		-2.2908		3.0895	-5.5	974	-2.510	b	-9.2911
6/18/12	1	2.0675		1	8.4566		19.2475	1	5.4506	15.7	684	20.469	9	20.0896
3/19/12	10	9.0868	-	-1	3.5784	-	11.8479	Pa	iste	this	col	umn		15.1831
12/19/11	1	5.6833		1	3.0435	_	18.5618	E.	t mon	he h	ackt	act	1	23.4456
9/19/11		0.0722		-1	0.1042	-	-8.3049		. com a	ue p	acre	cat		-3.6834
6/20/11		9.0545			4.8325		-6.2147	re	sult	ts				0.534
3/21/11	1.1.8	2.9297	1	- (e	1.0511		2.4476	-1	0.5237	-3.1	038	-3.682	9	-1.873)
12/20/10		2.4799		- 14	1.8745		4.6632		3.7942	1	952	3.583	4	0.7675
9/20/10	1	4.9915		2	0.5674	-	16.2391	1	9.0474	15.8	877	22.429	2 3	18.7342
6/21/10		3.9684		1	6.0196		12.2438		1.801	0.6	567	17.667	4	16.303
3/22/10	1	0.7708			6.2173	2	12.7568		4.7373	0.9	259	1.330	5	-1.3418
12/21/09		4.9073			0.5696		2.7819		3.5772	4	831	3.118	7	4.278
9/21/09		3.2418			2.2954		3.3858		2.0914	4,3	145	-2.934	5	1.8161
6/22/09	2	6.6321			7.5978	3	28.0455	1	6.3085	6.1	757	20.721	2	19.4953
3/23/09	3	9.1265		1	8.6938)	81.5908	2	1.5032	15.7	784	59.644	4 !	58.3525
12/22/08		-8.691			9.3324		-4.8771		2.6355	1.0	808	-9.390	8	7.1866
0/22/00	+3	7.3643		-4	3.7325	32	44.9022	-4	7.0565	-29.1	237	-54.205	6 -	51.6603
3/22/08				-2	4 4237	542	27 9967	-2	1.3266	-15.1	177	-21.112	3	-1.9294
6/23/08		3.3078											-	
6/23/08 3/24/08		5.8969		- 7	8.0835		28.0274		4.0724	11.8	767	-0.236	7	-4.2494
6/23/08 6/23/08 3/24/08 12/24/07		5.8969 9.4453		-1	8.0835		28.0274	-1	4.0724	-19.	767 618	-0.236	7 9	-4.2494

This is a lot of work, isn't it? If someone out there has the programming skills to automate this effort then I would love to hear from you.

Sheet 2 (Rating)

On this worksheet, the delta between each factor and the target universe as a whole is calculated for each three month period. Then a rating is calculated for each stock factor. The rating is essentially a crude version of the **Sharpe Ratio**, except it is not annualized and uses the target universe in place of the no risk return. This sheet also determines and lists the top 25 stock factors in order of rating.

PA		11	No.	6		_
Date	Universe	IncPerEmp	SIRatio	ROA%[TTM -PTM]	LiabCurQ/MktCap	OpIn
7/06/99	N/A	-7.58	-4.48	3.25	11.91	0.50
4/05/99	N/A	7.89	3.95	-5.59	-12.27	17.89
1/04/99	N/A	-0.87	-0.93	-2,63	-9,77	-4.01
	Rating	-0.74	0.71	-0.83	-1.18	0.45
_	NAME AND ADDRESS OF					
actor	Description	P123 EQ	Rating			
AC116	Clean income statem	er abs((spotems(u, Ar	mj#1.64			
ACT15	EPS stability	EPSStableQ	1.56			
ACT101	TACC_TTM	Eval(AstTot(3,qtr)-	Cas 1.54			
ACT07	ev / projected earnin	igs (mktcap + DbtTotQ	- (C1.33			
ACT67	EPS Estimate Revisio	n C{CurFYEPSMean+ C	#F\1.25			
ACT57	Sales Acceleration - r	rec (Sales%ChgPYQ+Sa	les'1.22			
ACT97	CY Estimate Range	CurFYEPSHigh/CurF	YEF1.19			
ACT54	Sales Percent Change	e, NSales%ChgPYQ	1.18	Top 2	5 factors	
ACT68	EPS Estimate Revisio	n C (CurQEPSMean - Cu	rQ11.15	hagad	on rating	
ACT14	Pr2FrCashFITTM	Pr2FrCashFITTM	1.14	Daseu	on racing	
ACTED	Short Interest, One N	Aor SI1Mo%Chg	1.06			
ACT100	TATA	(EBITTTM-FCFTTM)	/(A1.00			
ACT88	Inventory Turnover,	MTTmuTurnTTM	0.90			
ACT64	Current Ratio, Quarte	erl) CurRatioQ	0.88			
ACT12	Price to Cash Flow Pe	ProcashFITTM	0.85			

Sheet 3 (Correlation)

This worksheet calculates the correlation between each of the 107 stock factors based on the 3 month dela returns calculated on Sheet 2.

	FACT01	FACT02	FACT03	FACT04	FACT05	FACT06	FACT07	FACT08	FACT09	FACT10	FACT11 F/
FACT01	1.00	0.07	0.46	0.35	0.34	0.36	-0.01	0.42	0.42	-0.33	0.41
FACT02	0.07	1.00	-0.05	+0.05	0.43	0.23	0.52	0.05	0.43	0.26	0.29
FACT03	0.46	-0.05	1.00	0.34	0.28	0.22	0.12	0.37	0.29	-0.18	0.28
FACT04	0.35	-0.05	0.34	1.00	-0.15	-0.17	-0.19	0.29	0.18	-0.51	-0.10
FACT05	0.34	0.43	0.28	-0.15	1.00	0.58	0.60	0.40	0.59	0.27	0.56
FACT06	0.36	0.23	0.22	+0.17	0.58	1.00	0.33	0.13	0.37	0.20	0.94
FACT07	-0.01	0.52	0.12	-0.19	0.60	0.33	1,00	0.50	0.68	0.39	0.34
FACT08	0.42	0.05	0.37	0.29	0.40	0.13	0.50	1.00	0.74	-0.27	0.18
FACT09	0.42	0.43	0.29	0.18	0.59	0.37	0.68	0.74	1.00	-0.06	0.41
FACT10	-0.31	0.26	-0.18	-0.51	0.27	0.20	0.39	-0.27	-0.06	1.00	0.18
FACT11	0.41	0.29	0.28	-0.10	0.56	0.94	0.34	0.19	0.41	0.18	1.00
FACT12	-0.29	0.51	-0.25	-0.42	0.45	0.25	0.57	-0.09	0.16	0.78	0.26
FACT13	-0.32	0.32	-0.03	-0.42	0.40	0.55	0.47	-0.17	0.05	0.70	0.53
FACT14	-0.06	0.59	0.00	-0.25	0.49	0.40	0.55	-0.06	0.20	0.58	0.41
FACT15	-0.25	-0.07	-0.06	0.41	-0.30	-0.25	-0.03	-0.08	-0.01	-0.28	-0.28
FACT16	-0.06	-0.07	-0.06	-0.07	-0.19	-0.12	-0.03	-0.06	0.00	0.08	-0.04
FACT17	-0.35	0.40	0.06	+0.23	0.39	0.29	0.40	-0.25	0.15	0.65	0.29
FACT18	0.62	0.11	0.31	0.11	0.45	0.62	0.16	0.34	0.44	-0.18	0.65
FACT19	0.60	-0.04	0.39	0.41	0.26	0.33	-0.08	0.33	0.28	-0.47	0.33
FACT20	0.38	0,51	0.21	-0.08	0.72	0.79	0.47	0,29	0.48	0.17	0.79
FACT21	0.31	0.26	0.09	0.01	0.36	0.63	0.29	0.18	0.32	0.10	0.65
FACT22	0.20	0.37	0.11	+0.09	0.57	0.61	0.31	0.10	0.23	0.36	0.65
mary R	-0 28 sting Corr	elation F	actors Ra	mData 0.15	es n.	-0.26	-0.36	-0.13	.0 51	-0.13	.ń 37

Sheet 1 (Summary)

The first worksheet lists the top stock factors with lower rated factors that are highly correlated to higher rated factors being "grey'ed out". Factors below a certain rating threshold are also grey'ed out. These thresholds are programmable.

		Ratiry	echolds te: 0.75					1			
Description	P123 EQ	Rating	Correlati	an	TATUS	LACTION	FACINE	EACTER.	64/152	LATER.	EACHS
Clean income Statement	absil/Spottems/0.App)+ Spottems App)+ Spi	1.64	FACTIA	1.00	05	-0.17	-0.03	-8.62	-0.08	0.05	0.16
EPS Stability	EPSStableQ	1.56	FACT15	8.05	10	0.11	-0.63	0.05	0.14	0.98	-0.12
TACC TTM	Eval(AstTot(3, dz)-CashEquiv(3, dt)-UsbCur	1.54	FACTION	0.17	0.11	1.00	0.44	0.08	-0.04	0.49	-0.29
av / projected samings	(mktose + ObtTotig - (CashPSQ * ShiOutMR))	1.13	FACT07	0.00	-0.03	4.64	1.00	-0.00	-0.01	0.01	0.05
EPS Extimate Revision CY	(CurFYEPSMean-CurFYEPS#WiAgo abs) Cur	1.75	EACT67	0.02	0.01	0.0	-0.08	1.00	0.11	0.13	0.50
Sales Acceleration - recent	(Sale:NOrgPVG-Sale:NOrg7TM)/acty Salesh	1.22	EACTS7	-0.08	0.14	-0.04	-0.65	0.11	1.00	0.06	0.04
CrEstimate Range	OurFYEPSHigt/OurFYEPSLow	1.19	FACT97	8.05	0.38	0.49	24	+0.13	0.05	1.00	-0.42
Tales Percent Change, Most Re	SalesNichgPvi0	1.18	FACISE	315	-0.12	-0.34	100	0.74	0.04	-0.41	1.00
	Coursel abient has bight		FACTER	0.27	0.07	0.05	-0.26	0.47	15	-0.01	0.38
	Corretation too high		FACTOR	-0.10	-6.13	9.35	6.93	+0.07	1.02	0.20	6.16
Short Interest, One Month Peri	SI1Mo%Chg	5.06	FACTES	9.22	-0.13	0.01	-0.29	0.16	0.06	0.07	-8.16
	100 B 10 C 20 B		FACT100	-0.05	0.04	0.94	0.29	8.27	-0.03	0.51	-8.10
And in case of the local division of the loc	And and a second se		FACT08	0.32	-0.24	0.34	0.56	0.09	0.27	0.18	0.30
5			FACT66	8.00	0.15	0.45	9.51	-0.11	-0.09	0.24	-4.09
Price to Cash Flow Per Share Ro	Py2CashFiTTM	0.95	FACT13	0.54	-0.09	0.33	0.47	+0.30	0.11	0.45	-0.22
Current Fiscal Year Projected P.	ProjPECurFV	0.43	FACT73	-0.12	-0.25	0.07	6.35	+0.00	-0.00	-0.07	0.23
	the second se		FACT12	-0.03	-0.13	卒56	0.07	0.16	-0.03	0.42	-6.17
S/NFicet 3 Mo Decrease	(SINFLOMPM3-SINFLOM)/SINFLOW	0.80	FACT98	0.02	-0.12	0.05	-0.68	-0.22	-0.19	0.10	-0.29
Oper PE	MitCap/ Opine(8.TTM)	10.05	FACT17	8.00	0.07	0.33	0.40	+0.15	0.02	0.50	-0.15
Rating	too low managements	Concession in the local division of the loca	FACTIN	0.01	0.06	0.29	0.45	0.19	0.00	0.20	6.11
eacing			FACTOR	-0.54	-0.02	0.37	0.45	-0.04	-0.25	0.37	0.03

That's enough info for one post. Next time I will attempt to describe the test environment, or how the tests are set up to make it easier (on me) :)

Test Environment

October 28, 2013

I've changed my plan a little bit from what I described in yesterday's post. I realized that no I'm not Superman and I can't afford to spend several months on this project. In other words, a few simplifications were in order.

First of all, I decided not to test every sector for every factor. Instead I will test the entire target universe for all 107 factors, then afterwards determine if individual sectors are covered by the stock factors. If not, then I will further test those sectors.

In addition, I won't be testing for rising/falling interest rates at this stage but instead I will do so during RS optimization. A separate project will be initiated to discover what factors work best in various economic conditions.

Stock Ranking Systems

So now I would like to show my "test environment". Believe it or not, I have 107 individual ranking systems, each with one stock factor corresponding to what is in the spreadsheet (see last post). Skeptics can view the screenshot below.

UUP	HOME READY-2-GO PORTFOLIO BOOK RANK SCREEN STOCK ETF TO SYSTEMS SEARCH	JLS COMMUNITY HELP	
edit)	🗴 🖻 🔹 🖷 🖉 New 👻 Filter		
stems	Nate	 Type ● 	Category o #Po
sms	E 🗖 📕 FACTOL	Stock	StockFactor 0
6)	🗄 🗖 🚰 FACTO2	Stock	StockFactor 1
t) seral (2)	H 🗖 🧧 FACTO3	Stock	StockFactor 0
tors (12)	E 🗂 🖪 ERCTOR	Ctark	StankEaster D
	14 (2		
	E FACT104	Stock	StockFactor 0
	II T 📓 FACTLOS	Stock	StockFactor 0
	E CI CALOS	Stock	StockFactor Q
	🗄 🗖 🚰 FACT10Z	Stock	StockFactor 0
	11 🗂 🖪 ELCTI1	Crark	Stade Bartar A

Test Universe

The test universe is the same as I described in the last post except I have removed the sector rule.

	a 📴	Test Universe					
😝 About Not	Rules						
d expand	R Search	cielus 🙀					
RATIOS & S STATEMENT OTHER FUN ESTIMATES TECHNICAL CLASSIFICA MISC	TATISTICS S & FILINGS DAMENTALS - INDICATORS & PRICE ITION	WORDS Examples TOTAL: 1131 factors and 189 function					
CUSTOM FOR	MULAS	TIPS: - Double click word/example to insert - Use arrows and Enter key to navigate tree - To search enter keywords in no particular orde - Detach reference to move it closer to where yo					
🕑 Hide 📑 🖓 A	dd Free Form Clear Start Universe Pr	russell 3000 💌 As Of (10/28/2013 📑 🗃 🕅 Ru					
+ 🛛 X 🕥	Universe (SP1500)						
4 🔀 🗙 🥥 and	AvgDailyTot (60) > 1000000						
+ 🛛 🗙 🕥 and	Close(0)>=1.56SMA(60)>=1.56Close(50	1 (500) >1					
+ 💽 🗙 🎯 and	EvenID=True						

The first step will be to backtest the complete target universe, even stock-IDs only. Note that the same screen is used to test the target universe as the individual stock factors. The Rule **Rank>80** is disabled for the universe backtest. The backtest setup and results are shown below. The stock universe backtest Alpha is 7.5% so individual factors have to perform much better to ultimately be chosen for the ranking system.

🖬 🔜 FACT Test

RATIOS & STA	TISTICS	WORDS Ex
E STATEMENTS 8	k FILINGS	117
OTHER FUNDA	MENTALS	
ESTIMATES	NDICATORS & DRICE	
E TECHNICAL - I	NDICATORS & PRICE	
E CLASSIFICATI	ON	
E MISC		-
E INDUSTRY FAC	CTOR	TIPS:
CUSTOM FORMU	ILAS	Double click w Use arrows a To search ent Detach refere
		Decadimentere

🛢 🔛 FACT Test

Price	Next Op	sen 🕑		Start Date - End Date	# 4 1/2/1999 - 10/28/2013
Rank Tolerance	0.0	Max Pos % (0-100)	0.0		1Y 5Y 10Y Max
Slippage %	0.0	Carry Cost %	0.0	Rebalance Frequency	3 Months
Long Weight %	100.0			Save Log 🥅	

Stock Factor Tests

Once the universe results have been downloaded and cut/pasted into the factor-discovery spreadsheet (see previous post) then I can proceed with backtesting each individual factor. The ranking system is selected from the **Main Settings** Tab. The rule Rank>80 is enabled on the **Rules** Tab. The screen setup is shown below. The **Backtest** Tab setup is the same as for the universe backtest.

FACT T

😝 About Note:	Main Settings	Rules	Hedge Rules	Results	Backte
Universe	Test Universe	9	*		Bench
Method	Long		_		Max N
Ranking	Ranking Syst	em			NOTE:
Ranking System	FACT01				Ranki
Released F SFR Old (8 SFR Test (SingleFact StockFa FACT0 FACT0	anking Systems (4) 13) ors (107) ctor (107))		_	FACT Creat Last Rank No De
-FACT03 -FACT04 -FACT05					

And now I'm away to the races! I should be finished the first round of testing (all 107 factors) in 4-8 hours.

Ranking System Optimizer Tutorial

October 30, 2013

Alchemist

A number of Portfolio123 members have been asking for a tutorial on the stock ranking system optimizer since it became available almost one year ago. P123 staff have been silent about its use ever since. Recently I became curious about it and decided to explore the feature to see how (or if) I could make use of it.

What I discovered was that the optimizer has some limitations that make it difficult to use without proper documentation. In addition, usage also requires use of EXCEL or other spreadsheet program in a fashion that is not very intuitive. But once the limitations and interface are understood then one can make effective use of it.

Just remember that it is only a tool and is only as good as the person using it. Optimization is not a science as some would like to believe. There is no correct end-point, or time to stop. Two people attempting to optimize the same ranking system will invariable come up with two different results.

In this tutorial I will attempt to optimize a popular stock ranking system, *All Stars: Piotroski*. It is the ideal ranking system to start with as there are only eight ranking factors and most investors are familiar with Piotroski.

The tutorial will be broken up into several parts as there are a lot of pictures, and google is already complaining about the load time of some of my articles :)

Preparing Piotroski For Optimization

October 30, 2013

I am going to attempt to optimize the Portfolio123 ranking system *All Stars: Piotroski*. The Portfolio123 implementation of Piotroski's screening factors is different than the original but provides a reasonable implementation.

Limitation of Stock Factors/Functions

The ranking system consists of eight factors. This is important because the P123 Ranking System Optimizer can handle fifteen factors and not much more. If you try to optimize a ranking system with 20 factors, for example, the optimizer will give errors when you try to generate permutations. The ranking system is shown below.

Performance Baseline

Before getting started with this exercise it is a good idea to measure the performance of the ranking system as is. To do this, you need to select the All Stars: Piotroski Ranking System (as shown above) and then select the performance link on the left side of the screen as shown below.

Portfolio123 ×	📷 (80208 unread) - sauger 🗙 🗡	🚳 Portfolio123 - Ranking	Sy 🗙 🔨 Performance repo	rts: Ga 🗙 🗸 🛲 Squarespac	e - Configura 🗙 🗸 🚾 St
← → C 🔒 https://w	ww.portfolio123.com/ra	nk_perf.jsp?rankid	=90113		
🔢 Apps 🛛 Yahoo! Finance - Busi	StockMarketStudent 🎧	Stock screener, model	Equity Clock » Season	🔟 Personal and Small Bu	Charts (Delayed) ::
portfolio	HOME READY-2-GO PO SYSTEMS SEARCH			TOOLS COMMUNITY	HELP
Factors	©New → belec	t Ranking System 💌	🕫 Save As ම Optimiz	e	
Performance Ranite Correlation Re Select gineer	P123 Ranking System	s 🕨 All-Stars		All-Stars ranking method: Pe	: Piotroski ercentile NAs Negati
About Notes	Historical Perform	nance by Ranks	44 4 01/00/1000	10/05/0010 N N	1

Once you arrive at the performance screen then the appropriate fields should be set up for the performance chart calculation. In this case, the defaults are going to be used. Click on the Run button to calculate the performance graph.

All-Stars: Piotroski ranking method: Percentile NAs Negative

Period	◀ ◀ 01/02/1999 - 10/26/2013 ► ♥ ■
	1Y 5Y 10Y Max
Rebalance Frequency	4 Weeks
Ranking Method	Percentile NAs Negative
Override Ranking Method	Percentile NAs Negative
Rank Buckets (2-200)	20 Slippage % 0,0 when a stock chang
Transaction Type	C Short
Benchmark	S&P 500
Filters (applied prior to ranking	g)
Universe	All Fundamentals 🗾 🕏
Filters (applied after ranking)	
Minimum Price	3.0
Sector	ALL
Output	
Chart Type	Annualized Returns C Performance Graph
Chart Size	500 X 500 pixels
Run	

Click on Run

The ranking system performance is shown below. With 20 ranking buckets, the highest ranking bucket **Rank > 95**, is the right-most bar on the chart and is 20% per annum calculated over the full data history starting in 1999.

All-Stars: Piotroski

ranking method: Percentile NAs Negative

Now that we know the baseline performance is, let's massage the ranking system into a form that is compatible with the optimizer.

Node Limitations

The next limitation of note is that the ranking system optimizer cannot able to handle composite nodes nodes such as the fundamentals node along with the 7 factors within the node. The optimizer also can't handle conditional nodes. **All complex nodes, apart from stock factor and formula, have to be eliminated.** In this case, the process is not too painful and can be done using either the text editor or the procedure described below.

Copying the Ranking System

All Stars: Piotroski is a P123 Ranking System and can't be edited directly. Therefore an editable copy must be created. This is done by clicking on **Save As**. Change the name of the ranking system then click on **Save**.

2123 Ranking Systems	🖡 All-Stars	
	-	All-Stars: Piotroski
N 90 14 NGS 125 10 25	95 Jul 1998 orde 16 86	ranking method: Percentile NAs Nega
branches f(x) text ed	litor raw editor (no ajax) solvi	7-2 2
50% [] + Pr	PBookQ	Node Properties
🖂 50% 🔄 🕇 Fur	ndamentals	
14.29%{()}+	GMgn%TTM - GMgn%PTM	[Opdate] [Copy,
14.29%{🔞} 🕇	OCFPSTTM-EPSPExclXorTTM チ(の)	Label All-Stars: F
14.29%{()}↓	DbtTot2AstQ - DbtTot2AstPYQ 手(約	Panking
14.29% [()] ↑	CurRatioQ- CurRatioPYQ <i>F(x)</i>	Q ♣ Lower values
14.29%	ROA%TTM-ROA%PTM f(a)	
14.29% [6] +	ShsOutAvgTTM - ShsOutAvgPTM チ(の)	Z Summation
	New Stock Ranking System	
	field crown raining of see	
Using modified set	tings from 'All-Stars: Piotroski'	
	<u> </u>	
Name	Stitts Piotroski Change	Name (1)
Ranking Method	Percentile NAs Negative	×
Visibility	Public	
Category	Unclassified	
	3.7 Mile 27 Mile	

Eliminating the Composite Node

After the ranking system has been copied and renamed, the composite node can be deleted. As mentioned before, this can be done by using the text editor (if you are a programmer). Otherwise, select Fundamentals and then cut the sub-nodes as shown below.

Now paste the sub-nodes at the top level as shown below.

We are going to start optimizing with equal-weighted stock factors/formula. Select the top level node **Stitts Piotroski, then select theWeights** Tab, click on **Distribute Evenly** then **Update**. These actions are shown below.

	💷 🗾 S ranking metho	titts Piotro d: <u>Percentile N</u> A	o <mark>ski</mark> s Negative	
branches reordering f(x) text editor raw editor (no ajax) 100% Stitts Piotroski Select	Node Properties Add No	de Weights R	tanking Method	4
50% {()}	Node Weights	Select	I nodes are assigned ec	Select Update
14.29%{()}↓ DbtTot2AstQ - DbtTot2AstPYQ <i>f</i> (x) 14.29%{()}↑ CurRatioQ- CurRatioPYQ <i>f</i> (x)	Pr2BookQ	12.5 %	3	Clear
14.29%{(()}↑ AstTurnTTM-AstTurnPTM ƒ(<) 14.29%{(()}↑ ROA%TTM-ROA%PTM ƒ(<)	GMgn%TTM - GMgn%PTM OCFPSTTM-EPSPExclXor	12.5 % .12.5 %	Select I	Distribute Evenly Fill Zeros Evenly
74.29% (♥) + ShsOutAvgTTM - ShsOutAvgPTM <i>F</i> (♥)	DbtTot2AstQ - DbtTot	12.5 %		Normalize
	CurRatioQ- CurRatioP AstTurnTTM-AstTurnPT	12.5 % 12.5 %		
	ROA%TTM - ROA%PTM	12.5 %		<u>_</u>

Got all that? Good. Now save the ranking system.

Now lets check the performance of this new ranking system. Use the same procedure as before. Despite changing the node weights, the performance is pretty similar. The top bucket is still 22% per annum. (Click to enlarge).

Period: 01/02/99 - 10/26/13 Rebalance Frequency: 4 Weeks Ranking Method: Percentile NAs Negative Slippage (% of trade amount): 0.0 Transaction Type: Long Universe: All Fundamentals Benchmark: S&P 500

Change Settings Download

Filters: Number of Buckets: 20 Minimum Price: 3.0 Sector: -- ALL --

The modification to the All Stars: Piotroski ranking system is now complete and we are ready to begin the optimization process.

Setting Up An Optimizer Study

October 31, 2013

In the last post, the ranking system was prepared by eliminating the composite node. The number of nodes (8) was not a concern as it was less than 15, one of the optimizer's limitations. The ranking system now looks like this:

💷 房 Stitts Piotroski ranking method: <u>Percentile NAs Negative</u>	
branches reordering f(x) text editor raw editor (no ajax) 100% † Stitts Piotroski	
12.5% () + Pr2BookQ	12
12.5% { () } ↑ GMgn%TTM - GMgn%PTM <i>f</i> ()	Node Properties Add Node Weights Ranking Method
12.5% () ↑ OCFPSTTM-EPSPExclXorTTM f()	Chasses Node Tume
12.5% 🚯 🕈 DbtTot2AstQ - DbtTot2AstPYQ FØ	Choose Mode Type
12.5% 🚯 🕇 CurRatioQ- CurRatioPYQ 𝖅<	choose 👻
12.5% { (} ↑ AstTurnTTM-AstTurnPTM F()	
12.5% () + ROA%TTM - ROA%PTM f()	
12.5% ((()) + ShsOutAvgTTM - ShsOutAvgPTM f()	

Start the Optimizer

Now click on **Optimize** to start up the ranking system optimizer.

A page called **New Ranking System Study** will be displayed where you can edit several parameters including the rebalance frequency, number of buckets, etc. For this tutorial, the default settings will be used. Click on **Save**.

	MARKET	FACTOR	OPTIMIZE	TICKER LINKS	REPORTS	LISTS	CUS
🖥 Save	S Cancel						
		N	lew Ra	nking S [.]	ystem	Stud	ly
	Name	Stitts	Piotroski				
	Based On	Stitts	Piotroski				
	Override Ranking Method	Use	Ranking Sy	stem Default	*		
	Rebalance Frequency	Four	Weeks 📘				
	Universe	All F	undamenta	Is			
	Filter: Min Price	3.0	1				
	Filter: Sector	AL	L		-		
	Number of Buckets	20					
	Category	Uncla	assified		•		

Set the Date Range

Click on the little plus sign button to edit the date periods.

Ra 1	ankingSystem Permutations on Total		
cc	llapse	_	
Ξ	Period Date Periods	+	10/25/12 10/26/13
0	General Ranking Method Rebalance Frequency Universe Filter: Min Price Filter: Sector Buckets	Edit D	ate Periods Four Weeks All Fundamentals 3.0 ALL 20
	 (i) + Pr2BookQ (i) + GMgn%TTM (i) + OCFPSTTM-E (ii) + ObtTot2AstQ (iii) + CurRatioQ-Q (iii) + AstTurnTTM- (iii) + ROA%TTM - (iii) + ShsOutAvgT 	- GMgn PSPExc 2 - DbtTr CurRatic AstTurn ROA%P TM - Sh:	0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12 %PTM IXorTTM ot2AstPYQ PYQ PTM TM sOutAvgPTM

The default date range is one year. We want to use the full data history. This can be done by editing the start date in the Current Date Periods, or clicking on the little calendar button shown below.

Current Date Periods

Start Date	/25/12
Period Length (weeks)	52 Pick Any Date Range
Number of Periods	1
Shift Dates by (weeks)	1
	Add Period(s)

Select Max followed by Add Period(s) as shown below.

Current Date Periods

Current Date Periods

10/25/12 10/26/13	Add Rolling Period	
	Start Date 1/2/199	99 🛛 🖬 🚾
	Period Length (weeks)	52
	Number of Periods	1
	Shift Dates by (weeks)	1
	Click on Add Period(s)	Add Period(s)

The end date for the maximum date range isn't correct. Delete the extra dates and leave the correct date range. Click on update as shown below.

Edit Date Ranges ...

The optimizer screen is shown below. We are now ready to start generating permutations.

Stitts Piotroski RankingSystem Permutations on 1 Total collapse F Period 01/02/99 10/26/13 Date Periods + F General Percentile NAs Negative Ranking Method Rebalance Frequency Four Weeks Universe All Fundamentals Filter: Min Price 3.0 Filter: Sector --- ALL ---**Buckets** 20 + 🖻 🔄 🕇 Stitts Piotroski 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12 **{③} ↓** Pr2BookQ { **()**} ★ GMgn%TTM - GMgn%PTM () ↑ OCFPSTTM-EPSPExclXorTTM () ↓ DbtTot2AstQ - DbtTot2AstPYQ () ↑ CurRatioQ- CurRatioPYQ **{()}** ★ AstTurnTTM-AstTurnPTM (0) ↑ ROA%TTM - ROA%PTM { ShsOutAvgTTM - ShsOutAvgPTM

In the next post I will introduce a special spreadsheet I created in order to assist in the generation of permutations.

Using EXCEL With The Ranking System Optimizer

October 31, 2013

In the last post a new stock ranking system optimization study was set up. Now I am going to introduce you to a special spreadsheet that I have prepared that will make it a little easier to perform the optimization steps. The spreadsheet can be found here: RS-Optimizer

Setting Up EXCEL

When EXCEL is opened you will need to set Calculation to **Manual**. The spreadsheet should only perform calculations when you force it to. Follow the steps shown below to set manual calculation.

You will also need to add the Calculate button to your Quick Access Toolbar as shown below.

Spreadsheet Details

Now lets have a look at the spreadsheet.

The spreadsheet is designed for a maximum of 15 stock factor nodes and 10 optimization iterations. This is the maximum size that you should consider using. There are several fields that you need to be aware of before using the spreadsheet.

Reference Node Weights - The 15 entries in this array represent the current weight settings for each factor. The starting value should be set to 10.

Randomized Array of Node Weights - this is an array of random weight values generated from the reference node weights when the EXCEL manual calculate is forced. This array will be eventually be copied and pasted into the Portfolio123 ranking system optimizer.

Randomization Formula - this is the formula used to generate the randomized array (shown above). The formula takes the reference node weight and adds +/- random offset. The maximum offset is determined by the sensitivity setting. In the example above the sensitivity is 50% and as you can see the values in the randomized array range between 7.5 and 12.5. The range is 50% of the reference weight.

On the next post I will perform the first steps of the optimization.

Ranking System Optimizer: The First Iteration

October 31, 2013

Up to this point, the reader has been introduced to the Portfolio123 rnking system optimizer and also the custom spreadsheet that I have prepared. Now it is time to use them both together. If possible, you should try to use two monitors with your computer. You don't have to, but it makes this procedure a lot easier as you will be going back and forth between the optimizer and spreadsheet frequently.

Lets start with the EXCEL spreadsheet.

Zero Out Unused Nodes

The Stitts Piotroski ranking system has eight nodes (stock factors/formula) so it is a good idea to zero out the remaining nodes in the spreadsheet as shown below. You don't have to perform this action but it helps visually to prevent copying the wrong size array in the future. It is also a good idea to manually recalculate just to ensure that you are starting with good randomized data. I recommend starting with 50% sensitivity setting although you can always experiment with this setting.

- 1	-			70						0		
4 🤞		• (*	f_x									
E	С	D	E	F	G	н	I.	J	К	Set Sensitivity to 50%	0	F
	1											
C	lick o	on (4)							Constituity (9/)	the	
R	ecan	culate	-							Sensitivity (%)	U	
										Roundoff Digits:	1	

15 Nodes (Max.), 10 Iterations (Max.)

	Weight / Iteration											
Node	Reference	1	2	3	4	5	6	7	8	9	10	
1	10.0000	8.1287	11.7076	12.4392	8.5270	11.6985	11.8121	10.5927	11.9470	12.3327	11.3984	
2	10.0000	12.4732	10.6092	10.4324	9.7823	11.5922	10.2011	12.2476	8.1627	8.6441	8.2369	
3	10.0000	8.6163	9.2449	8.5375	9.8947	8.3331	10.7718	11.4261	8.7484	10.2486	8.8756	
4	10.0000	10.2573	9.8688	11.6705	7.9965	11.5288	8.1490	10.2675	8.7226	12.0271	9.8304	
5	10.0000	9.7031	9.4508	8.3104	11.2894	10.1937	12.4035	10.1989	8.6081	7.6103	11.8129	
6	10.0000	9.6746	11.1171	9.0075	9.3453	7.9360	8.1653	9.6791	11.0030	8.9195	9.6620	
7	10.0000	8.3853	7.9534	8.9878	8.8928	12.1359	11.2033	12.4570	10.3671	8.1049	8.9366	
8	10.0000	8.0309	8.3559	9.9873	10.6026	11.5608	7.6041	10.9293	8.2455	11.6008	12.4629	
9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	R	Set R	eference	Nodes	0		Sate	andomi	ration A	rav o		

Set Randomization Array Nodes 9-15 to Zero

2

Generate Permutations

9 thru 15 to Zero

Now open up the ranking system study if not already open. We are about to perform the first iteration of the optimization process. Click on the button with a "plus sign" as shown below to add permutations.

		Stitts Piotroski				
Ri 1	ankingSystem Permutations on Total					
u	mapse					
Ξ	Period Date Periods +	01/02/99 10/26/13				
Ξ	General Ranking Method	Percentile NAs Negative				
	Rebalance Frequency	Four Weeks All Fundamentals				
	Universe					
	Filter: Min Price	3.0				
	Filter: Sector	ALL				
	Buckets	20				
Ξ	🔄 🕇 Stitts Piotroski 📑	0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12				
	{	ADD / EDIT Permutation(s)				
	{ OCFPST Click h	ere to edit				
	{(6)} ↓ DbtTot2, the peri	mutations				
	🚯 🕇 CurRatioQ- CurRa	tioPYQ				
	{③} ↑ AstTurnTTM-AstTu	rnPTM				
	(③) ★ ROA%TTM - ROA%	PTM				
		she OutovaPTM				
	tes + ShSOuckightin - S	in southy from				

Switch back to the spreadsheet and copy the array of randomized node weights.

WARNING: Be sure not to copy the reference weights and also do not copy nodes 9 through 15. Doing so will cause an error because the wrong amount of data would be pasted into the ranking system optimizer.

Ē	🔏 Cut	Arial	* 10	• A A	==:	≣ ॐ**	📑 Wrap 1	ſext	Number		•	
Paste	Copy -		-0	3 - A -			-a- Merge	& Center 🔻	\$ * %	• •.0 .0 ◆ 00.	Conditi	onal Format
	ца сору			-		Alianm	ent	2	Nur	nhar	Formatt	ing * as Table Styles
	Copy as Pic	ture	PC	- 19	A	Augrin	enc	- Cal	NUN	1001	(34)	Styles
5	· (" × 🛄 ₹											
	F7	×(°,	fx =ROUN	ID(\$D7+\$O\$	\$2*(RAND()-0.5)/10,\$	O\$3)					
	A E C	D E	F	G	н	1	J	К	L	M	N	O F
1						-						
2			1 Blo	ck Select	random	8 ization			Sensitivit	y (%)		50
3		6.	arra	V					Roundoff [)iaits:		4
1723										STC 10050	27	
4	15 Nod	ies (Max.), 10 i	iterations (I	nax.)								5
5				<u>514</u> 3		weign	t / Iteratio	n) 2023	<u></u>	858	828	002428
6	Node	Reference	1	2	3	4	5	6	1	8	9	10
7	1	10.0000	11.5894	9.0649	11.7977	9.8785	12.0342	7.8233	11.5249	9.5561	11.8492	11.1283
8	2	10.0000	12.1950	11.8433	9.6846	8.7468	7.9600	9.5727	8.9031	11.4996	12.1327	9.5081
9	3	10.0000	9.9284	9.7756	10.9421	12.3649	7.9134	10.6683	7.6293	7.8965	7.9301	11.4297
10	4	10.0000	7.8332	11.9471	8.8542	9.6598	11.5050	9.5356	7.5203	9.0616	11.9329	10.4958
11	5	10.0000	9.5273	11.8790	11.6468	8.0966	12.1098	9.0355	9.4434	8.7352	11.6977	7.6130
12	6	10.0000	11.1721	9.2182	12.4369	8.4495	11.5175	12.0916	9.0065	9.7781	8.0545	9.9439
13	7	10.0000	11.5018	11.2315	11.4912	10.0247	8,8644	11.1694	11.2074	8,5267	9.9507	11.787E
14	8	10.0000	11.9445	9.4397	8.5569	8.2275	12.2788	7.7010	7.6291	8.0362	9.0718	8.1583
15	9	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
16	10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
17	11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
18	12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
19	13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
20	14	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
21	15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Now return to the ranking system optimizer. You should be on the screen "Add Permutation for Stitts Piotroski". Select all of the permutations listed as shown in the figure below. Paste the 8 rows by 10 columns of randomized data, overwriting the original permutations listed in the ranking system optimizer. Then click on **Update**.

Now you will see the permutations listed as shown below. Click on Generate Permutations.

Process the Permutations

Select Run to start processing the 10 permutations. Click on Toggle Charts to disable the display of charts as they are not necessary for this exercise.

© Ne∖	w 👻 🗄 Select St	udy 👻 🖻 Save As 👼 Delete 🥓 Edit Permutat	ions 🕨 R	un	Toggle Chai	rts
My St	udys 🕨 Unclassified	Stitts Piotroski	4			
Derm 🔺	Date Periods	Stitte Diatroski	Sele	ct	Turn off	Firs
1	01/02/99 10/26/13	11.59, 12.19, 9.93, 7.83, 9.53, 11.17, 11.50, 11.94	Run		Charts	T.H.S.
2	01/02/99 10/26/13	9.06, 11.84, 9.78, 11.95, 11.88, 9.22, 11.23, 9.44	1)	2	
3	01/02/99 10/26/13	11.80, 9.58, 10.94, 8.85, 11.65, 12.44, 11.49, 8.56			a second	
<u>4</u>	01/02/99 10/26/13	9.88, 8.75, 12.36, 9.66, 8.10, 8.45, 10.02, 8.23				
<u>5</u>	01/02/99 10/26/13	12.03, 7.96, 7.91, 11.51, 12.11, 11.52, 8.86, 12.28				
<u>6</u>	01/02/99 10/26/13	7.82, 9.57, 10.67, 9.54, 9.04, 12.09, 11.17, 7.70				
Z	01/02/99 10/26/13	11.52, 8.90, 7.63, 7.52, 9.44, 9.01, 11.21, 7.63				
<u>8</u>	01/02/99 10/26/13	9.56, 11.50, 7.90, 9.06, 8.74, 9.78, 8.53, 8.04				
9	01/02/99 10/26/13	11.85, 12.13, 7.93, 11.93, 11.70, 8.05, 9.95, 9.07				
<u>10</u>	01/02/99 10/26/13	11.13, 9.51, 11.43, 10.50, 7.61, 9.94, 11.79, 8.16				

Choosing the Best Permutation

When the permutations are finished processing you will see the results. At this point in time you must choose the "best" result from the 10 permutations. Now this is very much a personal decision. I look at the last bucket first, and the Delta (highest bucket to lowest bucket) second. As you can see from the figure below, permutation #3 has the highest last bucket with 22.17%. However, permutation #5 is a fraction lower but has a much larger delta of 20.01 versus 18.90. Thus I decided that permutation #5 is the best permutation. As I said before, there is no right or wrong choice so don't get hung up on your decision.

🕫 New 🔻	🗄 Select Study 🔻	Save As	ወ Delete	Edit Permutations	Run	Toggle Charts	* Download
---------	------------------	---------	----------	-------------------	-----	---------------	------------

My Studys 🖡 Unclassified

Stitts Piotroski

Perm 🔺	Date Periods 🛛 🗢 🖨	Stitts Piotroski 🔶	Min 🜩	Median 🖨	Mean 🖨	Max 🖨	First 🗢	Last 🗢	Delta 🗢	Slope 🗢	StdDev 🖨
1	01/02/99 10/26/13	11.59, 12.19, 9.93, 7.83, 9.53, 11.17, 11.50, 11.94	0.37	9.61	9.41	21.23	2,41	21.23	18.82	0.91	5.54
2	01/02/99 10/26/13	9.06, 11.84, 9.78, 11.95, 11.88, 9.22, 11.23, 9.44	0.41	9.51	9,43	21.03	3.09	21.03	17.94	0.84	5.12
<u>3</u>	01/02/99 10/26/13	11.80, 9.58, 10.94, 8.85, 11.65, 12.44, 11.49, 8.56	1.30	9.43	9.48	22.17	3.28	22.17	18.90	0.86	5.29
4	01/02/99 10/26/13	9.88, 8.75, 12.36, 9.66, 8.10, 8.45, 10.02, 8.23	0.75	9.41	9.38	21.52	3.33	21.52	18.20	0.85	5.23
5	01/02/99 10/26/13	12.03, 7.96, 7.91, 11.51, 12.11, 11.52, 8.86, 12.28	1.18	9,45	9,46	22.15	2.14	22,15	20.01	0.91	5.57
<u>6</u>	01/02/99 10/26/13	7.82, 9.57, 10.67, 9.54, 9.04, 12.09, 11.17, 7.70	1.63	10.00	9.46	21.87	3.34	21.87	18.54	0.84	5.20
Z	01/02/99 10/26/13	11.52, 8.90, 7.63, 7.52, 9.44, 9.01, 11.21, 7.63	0.27	9.71	9.47	22.13	2.81	22.13	19.31	0.89	5.42
<u>8</u>	01/02/99 10/26/13	9.56, 11.50, 7.90, 9.06, 8.74, 9.78, 8.53, 8.04	-0.51	9.93	9.46	21.73	3.54	21.73	18.19	0.87	5.38
<u>9</u>	01/02/99 10/26/13	11.85, 12.13, 7.93, 11.93, 11.70, 8.05, 9.95, 9.07	-0.32	9.79	9.44	21.16	2.79	21.16	18.37	0.86	5.29
<u>10</u>	01/02/99 10/26/13	11.13, 9.51, 11.43, 10.50, 7.61, 9.94, 11.79, 8.16	1.33	10.60	9.42	22.01	3.13	22.01	18.88	0.86	5.31

Updating the Spreadsheet

Now that I have chosen permutation #5 I can go back and update the spreadsheet. This is done by copying iteration #5 from the randomized array as shown below.

	88 888 8	6	2010		Weigh	nt / iterat	Cobà		
lode	Reference	1	2	3	4		Paste Options:	9	1
1	10.0000	11.5894	9.0649	11.7977	9.8785	12.034	Right Mouse C	ick.8492	11.1283
2	10.0000	12.1950	11.8433	9.5845	8.7468	7.960	Paste Specithen select Cor	V .1327	9.508
3	10.0000	9.9284	9.7756	10.9421	12.3649	7.913	Insert	7.9301	11.4297
4	10.0000	7.8332	11.9471	8.8542	9.6598	11.505	- Delete	11.9329	10.4958
5	10.0000	9.5273	11.8790	11.6468	8.0966	12.109	Deleten	11.6977	7.6130
6	10.0000	11.1721	9.2182	12.4369	8.4495	11.517	Clear Contents	8.0545	9.943
7	10.0000	11.5018	11.2315	11.4912	10.0247	8.864	Filt <u>e</u> r 🕨	9.9507	11.7876
8	10.0000	11.9445	9.4397	8.5569	8.2275	12.278	S <u>o</u> rt >	9.0718	8.1583
9	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	Insert Comment	0.0000	0.0000
10	0.0000	0.0000	0.0000	0.0000	0.0000	0.000 🚽		0.0000	0.0000
11	0.0000	0.0000	0.0000	0.0000	0.0000	0.000 🖆	<u> </u>	0.0000	0.0000
12	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	Pic <u>k</u> From Drop-down List	0.0000	0.0000
13	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	Define N <u>a</u> me	0.0000	0.0000
14	0.0000	0.0000	0.0000	0.0000	0.0000	0.000 🧕	Hyperlink	0.0000	0.0000
15	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.	0.0000 0.0000 0.0000	0.0000	0.0000

Now paste the weights from iteration #5 into the reference array.

WARNING: Make sure that you paste Values Only into the reference array. In the past I have succeeded in completely locking up my spreadsheet by pasting values and formulas. It isn't easy to recover from such an event.

Node Refere Sensitivity (%) 50 1 10.0 Paste Options: 3 4 5 6 7 8 9 1 10.0 Paste Special 3 4 5 6 7 8 9 3 10.0 Instruction 3 4 5 6 7 8 9 3 10.0 Instruction 3 4 5 6 7 8 9 10.0 Instruction 2 9.5561 11.8492 11.1 4 10.0 Instruction 2 9.5727 8.9031 11.4996 12.1327 9.5 10.0 Instruction 2 9.5727 8.9031 11.4996 12.1327 9.5 10.0 Instruction 2 10.9727 8.9031 11.4996 12.1327 9.5 10.0 Instruction 2 11.2 11.2 11.2 11.2 11.4 11.4 11.92	С	D	E F G	Н	1	J	К	L	M	N	0
Kode Cut Cut Cut Sopy Paste Options: Weight / Iteration Node Refere Node Paste Options: Soft 11.8492 11.18492 11.18492 11.18492 11.18492 11.18492 11.18492 11.18492 11.1496 12.1327 9.5561 11.8492 11.4996 12.1327 9.5561 11.8492 11.4996 12.1327 9.5561 11.8492 11.4996 12.1327 9.5561 11.8492 11.4996 12.1327 9.5561 11.8492 11.4996 12.1327 9.5561 11.8492 11.4996 12.1327 9.5561 11.8492 11.4996 12.1327 9.5561 11.8492 11.4996 12.1327 9.5577 8.9031 11.4996 12.1327 9.5727 8.9035 9.4434 8.7352 11.8977 7.60 G 10.0 Paste Special Paste Values 5 12.0916 9.0065 9.7781 8.0545 9.99 9.91 11.77 8 9.9357 9.434 8.7352 11.8977 7.60 9 0.0 0.0 0.0000 0.0000 0.0000 0.00000 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Sensitivit</th> <th>y (%)</th> <th></th> <th>50</th>								Sensitivit	y (%)		50
15 Nodes (Max. Node Refere 1 10.0 Paste Options: 3 4 5 6 7 8 9 1 10.0 Paste Special Paste Special Paste Special 1 10.0 9.55561 11.8492 11.1 2 10.0 Paste Special Paste Special Paste 0 9.5727 8.9031 11.4996 12.1327 9.5561 3 10.0 Desc Paste Special Paste Special Paste Values 5 12.0916 9.0355 9.434 8.7522 11.8977 7.6 6 10.0 Paste Comment 3 10.0 Paste Values 5 12.0916 9.0065 9.7781 8.0545 9.9 7 10.0 Paste Comment 3 10.0 Paste Values 5 12.0916 9.0065 9.7781 8.0362 9.0718 8.1 9 0.0 Insert Comment 3 10.0 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.		X	Cut	-				Roundoff [)igits:		
Node Refere Paste Options: Weight / Iteration 1 10.0 123 10.0 3 4 5 6 7 8 9 2 10.0 10.0 Paste Special Paste 0 9.5727 8.9031 11.4996 12.1327 9.5 3 10.0 Ins 2 10.0 9.5727 8.9031 11.4996 12.1327 9.5 3 10.0 Ins 2 11.5 0 9.5727 8.9031 11.4996 12.1327 9.5 3 10.0 Ins 2 11.5 0 9.5756 7.5203 9.0616 11.9329 10.4 5 10.0 Filtgr Filtgr 8 9.0355 9.4434 8.7352 11.6977 7.6 9 0.0 Insert Comment 3 11.1694 11.2074 8.5267 9.9507 11.7 8 9 0.0000 0.0000 0.00000 0.0000 0.0000	15 Nod	les (Max. 🛅	Conv								
Node Refere 1 10.0 3 4 5 6 7 8 9 1 10.0 Paste Special Paste Special Paste 0 9.5727 8.9031 11.4996 12.1327 9.5561 3 10.0 Ins 2.1d Its Paste Special 0 9.5727 8.9031 11.4996 12.1327 9.556 3 10.0 Ins 2.1d Its Paste 0 9.5727 8.9031 11.4996 12.1327 9.556 3 10.0 Ins 2.1d Its Paste 0 9.5727 8.9031 11.4996 12.1327 9.556 10.0 Ins 2.1d Its Paste Values 5 12.0916 9.0665 9.7781 8.0545 9.9 10.0 Insert Comment Insert Comment Insert Comment 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000<	10 1100		Paste Ontions:		Weigh	t / Iteratio	n				
1 10.0 Paste Special 10.0 Paste Special 0 9.5727 8.9031 11.4996 12.1327 9.5 3 10.0 Ins 2 10.1 0 9.5727 8.9031 11.4996 12.1327 9.5 3 10.0 Ins 2 10.1 0 9.5727 8.9031 11.4996 12.1327 9.5 4 10.0 Ins 2 11.1 0 9.5727 8.9031 11.4996 12.1327 9.5 5 10.0 Ins 2 10.1 10.0 9.5356 7.5203 9.0616 11.9329 10.4 6 10.0 Filter 11.1 11.1694 11.2074 8.5267 9.9507 11.7 7 10.0 Sgrt 11.1697 7.6291 8.0362 9.0718 8.1 9 0.0 Insert Comment 3 10.0 11.1694 11.2074 8.5267 9.9507 11.7 9 0.0 Insert Comment 11.1 10.0 0 0.00000 0.0000 0.	Node	Refere		3	4	5	6	7	8	9	
2 10.0 Paste Special Paste 0 9.5727 8.9031 11.4996 12.1327 9.5 3 10.0 Ins 2 11.1 11.4996 12.1327 9.5 4 10.0 Ins 2 11.1 11.4996 12.1327 9.5 5 10.0 Ins 2 11.1 11.4996 12.1327 9.5 6 10.0 Ins 2 11.1 11.4996 12.1327 9.5 6 10.0 Ins 2 11.1 11.1 11.4996 12.1327 9.5 6 10.0 Ins 2 11.1 11.1 11.1 11.1 11.1 11.4996 12.1327 7.6 7 10.0 Insert Comment 3 11.2 123 123 123 123 123 123 123 123 123 123 11.1694 11.2074 8.5267 9.9507 11.7 7 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 <	1	10.0		77	N 0705	12.0242	7.8233	11.5249	9.5561	11.8492	11.1
3 10.0 Ins 2 :d 1:s ind 1:s 1:d 1:s ind 1:s 1:d 1:s ind 1:s 1:d 1	2	10.0	Paste <u>Special</u>	Pa	ste	10	9.5727	8.9031	11.4996	12.1327	9.5
4 10.0 Desce Paste Special Clear connection 0 9.5356 7.5203 9.0616 11.9329 10.4 5 10.0 10.0 Clear connection 8 9.0355 9.4434 8.7352 11.6977 7.6 6 10.0 Filter 5 12.0916 9.0065 9.7781 8.0545 9.9 7 10.0 Sort 11.1932 123 123 123 123 4 11.1694 11.2074 8.5267 9.9507 11.7 8 10.0 Sort Insert Comment 3 Important 0 0.0000	3	10.0	Ins net its		fx %fx	14	10.6683	7.6293	7.8965	7.9301	11.4
5 10.0 Paste Special Image: Clear control Paste Values 5 12.0916 9.0065 9.7781 8.0545 9.9 7 10.0 Filter Filter Filter 5 12.0916 9.0065 9.7781 8.0545 9.9 8 10.0 Filter Filte	4	10.0	Derec			10	9.5356	7.5203	9.0616	11.9329	10.4
6 10.0 Filter 5 12.0916 9.0065 9.7781 8.0545 9.9 7 10.0 Filter 123 123 123 123 123 123 123 11.1694 11.2074 8.5267 9.9507 11.7 8 10.0 Sort Sort 10.0 10 10.0 10 10.0 10.0 10.0 Filter 10.0 10.0 10.0 Filter 10.0000 10.0000 10.0000<	5	10.0	Clear			18	9.0355	9.4434	8.7352	11.6977	7.6
7 10.0 Filter 123 <td< td=""><td>6</td><td>10.0</td><td>eredi co<u>n</u>terito</td><td>Pa</td><td>ste Values</td><td>5</td><td>12.0916</td><td>9.0065</td><td>9.7781</td><td>8.0545</td><td>9.9</td></td<>	6	10.0	eredi co <u>n</u> terito	Pa	ste Values	5	12.0916	9.0065	9.7781	8.0545	9.9
8 10.0 Sort Insert Comment 3 Paste Options 8 7.7010 7.6291 8.0362 9.0718 8.1 9 0.0 Insert Comment 10 0.0000 0.00	7	10.0	Filt <u>e</u> r	123	3 12% 123	.4	11.1694	11.2074	8.5267	9.9507	11.7
9 0.0 Insert Comment 1 1 0 0.0000	8	10.0	S <u>o</u> rt	~ 1	er Paste Opl	tions 18	7.7010	7.6291	8.0362	9.0718	8.1
10 0.0 Format Cells Format Cells ** Important ** 0 0.0000	9	0.0 늘	Insert Comment	3) 1	國際	10	0.0000	0.0000	0.0000	0.0000	0.0
11 0.0 Dofinac Cens Paste Values Only 0 0.0000 <th< td=""><td>10</td><td>0.0 🚕</td><td>Format Cells</td><td>** Imj</td><td>oortant **</td><td>10</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0</td></th<>	10	0.0 🚕	Format Cells	** Imj	oortant **	10	0.0000	0.0000	0.0000	0.0000	0.0
12 0.0 Pick From Drop-down List 00 0.00000 0.0000 0.00000	11	0.0	<u>Piele France Dana</u> davias kiek	Paste	e Values	Only 0	0.0000	0.0000	0.0000	0.0000	0.0
13 0.0 Define Name 00 0.0000 <td>12</td> <td>0.0</td> <td>PICK From Drop-down List</td> <td></td> <td>0.0000</td> <td>0.0000</td> <td>0.0000</td> <td>0.0000</td> <td>0.0000</td> <td>0.0000</td> <td>0.0</td>	12	0.0	PICK From Drop-down List		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0
14 0.0 0.0000	13	0.0	Define N <u>a</u> me	00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	14	0.0 😫	Hyperl <u>i</u> nk	00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0
	15	0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0
		B	I = 🖄 · A · 🖽 ·	4.0 .00 0. ↓ 00.	r -						

One iteration of the optimization process has now been completed. This will be performed over and over again, starting with **Manual Calculation**.

	• (*	<i>f</i> x 12.0342									
F C	D	F	G	Н	1	J	К	L	M	N	0
lick on	late							Sensitivit	y (%)		50
utton	late							Roundoff [)igits:		
15 Noc	les (Max.), 10	Iterations (I	Max.)								
					Weigh	t / Iteratio	n				
Node	Reference	1	2	3	4	5	6	7	8	9	10
1	12.0342	11.5894	9.0649	11.7977	9.8785	12.0342	7.8233	11.5249	9.5561	11.8492	11.1283
2	7.9600	12.1950	11.8433	9.5845	8.7468	7.9600	9.5727	8.9031	11.4996	12.1327	9.5081
3	7.9134	9.9284	9.7756	10.9421	12.3649	7.9134	10.6683	7.6293	7.8965	7.9301	11.4297
4	11.5050	7.8332	11.9471	8.8542	9.6598	11.5050	9.5356	7.5203	9.0616	11.9329	10.4958
5	12.1098	9.5273	11.8790	11.6468	8.0966	12.1098	9.0355	9.4434	8.7352	11.6977	7.6130
6	11.5175	11.1721	9.2182	12.4369	8.4495	11.5175	12.0916	9.0065	9.7781	8.0545	9.9439
7	8.8644	11.5018	11.2315	11.4912	10.0247	8.8644	11.1694	11.2074	8.5267	9.9507	11.7878
8	12.2788	11.9445	9.4397	8.5569	8.2275	12.2788	7.7010	7.6291	8.0362	9.0718	8.1583
9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
and the second s	0.0000	0.0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000

That completes this portion of the ranking system optimizer tutorial. The next post will focus on pruning the nodes and completing the optimization.

Pruning Nodes From The Ranking System

November 1, 2013

Recap of the Optimization Sequence

In the last post I described the sequence of actions required to generate new permutations, run the optimizer and select the best permution. This is repeated over and over again until you decide you can't improve the performance any further. Before going any further I would like to recap the iterative optimization process.

From the spreadsheet you start by clicking on the manual calculate button. This causes new randomized data to be generated from the reference weights. Then block select the randomized data (8 nodes x 10 iterations). Copy the data.

	Arial	- 10	* A A		≡ */**	■ Wrap	Text	Number		1	22		A	
Сору т	BZU	• III • .	8 - A -			-a- Merge	& Center *	\$ + %	, +; 0	×	Cu <u>t</u>			Insert
⁻ ormat Painte	r = = =		-				a contor	4 70		a	<u>С</u> ору	N		•
bard (Gi	Font	57		Alignm	ent	15	Nun	iber	3	Paste Option			
- 🗍 👻											ã /	2		
7 🔥	+ (n	fx =ROUN	D(\$D7+\$O\$	2*(RAND()-0.5)/10,\$	O\$3)					Paste Spe	9		
Click on		E F	G	н		J	К	L	M		Insert			S
Manual (Coloulato										- Delete			
Mariuar	Jaiculate		6	2			1.0		and the second		<u>Clear Conten</u>	+*		
6				Block	< Select			Sensitivit	y (%)		ciear co <u>n</u> teri	0		
U				Randomi	ized Wei	ghts		Roundoff D)igits:		Filt <u>e</u> r		183	
15 Nod	les (Max.), 10	Iterations (I	lax)						1		S <u>o</u> rt		•	
10 1104	100 (inidini)) 10	nordaono p	, and the second se	-	Weigh	t / Iteratio	n		1		Insert Co <u>m</u> m	ent		
Node	Reference	1	2	3	4	5	6	7		T	<u>F</u> ormat Cells.	ò		
1	10.3827	10.1846	10.4268	10.8671	10.7570	10.3032	10.2038	10.1018	10.577		Pick From Dr	op-down List		
2	10.3710	10.0005	10.5947	10.6165	9.9781	9.9157	10.3634	9.8786	10.352		– Define Name	- 28 		
3	10.1040	9.9668	9.9534	10.1660	9.6769	10.3947	9.6202	9.8132	10.414		Huparlink			
4	9.9769	9.9009	10.4148	9.5162	10.0963	10.2525	9.6540	9.8201	10.407	Ð	пурецик		-	
5	10.1176	10.1347	10.4370	10.0430	9.6779	9.9834	10.5631	10.4348	10.182 ⁻	3.4 C S	n neean	17103	10000	(Maria)
6	9.7446	10.1597	9.9357	9.9977	9.5695	9.9861	9.8006	10.0583	10.240	rial	* 10 *	A A >	* %	, <u>-a-</u>
7	10.3009	10.7752	10.5480	10.0338	10.4840	10.0935	10.4241	10.7290	10.099 🛽	₿.	I 🗏 🖄 🔹	A - 🖽 -	€.0 .00 .€ 00.	3 🝼 🛛
8	9.7126	9.5690	9.5413	9.5980	10.1541	10.0625	9.4814	9.7902	9.6057		9.5172 9	.9403		
9	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	Second Second	0.0000 0	.0000]		
10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000 0	.0000		

At Portfolio123, select Edit Permutations if you are still at the last optimizer results page. Otherwise skip this step.

ρ	orciolio	HOME READY-2-GO PORTFOLIO BOOK	RANK	SCREE	N STOC	KET	TO
		MARKET FACTOR OPTIMIZE TICKER LINKS	REPOR	RTS LIST	s cusi		MULAS
@Ne	w 👻 🗄 Select St	udy 👻 🖻 Save As 🗯 Delete 🖍 Edit Permuta	tions	►Run I	Toggle	e Char	ts 🛓
My St	tudys ⊧ Unclassified	Stitts Piotrosk	i				
Perm 🔺	Date Periods 🛛 🗢	Stitts Piotroski	Min 🖨	Median 🖨	Mean 🖨	Max 🗢	First \$
1	01/02/99 10/26/13	11.59, 12.19, 9.93, 7.83, 9.53, 11.17, 11.50, 11.94	0.37	9.61	9.41	21.23	2.4:
2	01/02/99 10/26/13	9.06, 11.84, 9.78, 11.95, 11.88, 9.22, 11.23, 9.44	0.41	9.51	9.43	21.03	3.09
3	01/02/99 10/26/13	11.80, 9.58, 10.94, 8.85, 11.65, 12.44, 11.49, 8.56	1,30	9,43	9.48	22.17	3.20
4	01/02/99 10/26/13	9.88, 8.75, 12.36, 9.66, 8.10, 8.45, 10.02, 8.23	0.75	9.41	9.38	21.52	3.33
5	01/02/99 10/26/13	12.03, 7.96, 7.91, 11.51, 12.11, 11.52, 8.86, 12.28	1.18	9.45	9.46	22.15	2.14
<u>6</u>	01/02/99 10/26/13	7.82, 9.57, 10.67, 9.54, 9.04, 12.09, 11.17, 7.70	1.63	10.00	9.46	21.87	3.34
Z	01/02/99 10/26/13	11.52, 8.90, 7.63, 7.52, 9.44, 9.01, 11.21, 7.63	0.27	9.71	9.47	22.13	2.8:
<u>8</u>	01/02/99 10/26/13	9.56, 11.50, 7.90, 9.06, 8.74, 9.78, 8.53, 8.04	-0.51	9.93	9.46	21.73	3.54
9	01/02/99 10/26/13	11.85, 12.13, 7.93, 11.93, 11.70, 8.05, 9.95, 9.07	-0.32	9.79	9.44	21.16	2.79
<u>10</u>	01/02/99 10/26/13	11.13, 9.51, 11.43, 10.50, 7.61, 9.94, 11.79, 8.16	1.33	10.60	9.42	22.01	3.13

Click on the small plus sign button to modify the ranking system weights.

RankingSystem Permutations on - Stitts Piotroski 10 Total	WARNING: Editing study permutations will delete existing results.
collapse	
Ranking Method	Percentile NAs Negative
Rebalance Frequency	Four Weeks
Universe	All Fundamentals
Filter: Min Price	3.0
Filter: Sector	ALL
Buckets	20
🗉 🗟 🕇 Stitts Piotroski	🛨 💽 11.59, 12.19, 9.93, 7.83, 9.53, 11.17, 11.50, 11.94
0	🛖 💽 9.06, 11.84, 9.78, 11.95, 11.88, 9.22, 11.23, 9.44 🗙
	🔽 💽 11.80, 9.58, 10.94, 8.85, 11.65, 12.44, 11.49, 8.56 🗙
	🖃 9.88, 8.75, 12.36, 9.66, 8.10, 8.45, 10.02, 8.23 🗙
	💌 12.03, 7.96, 7.91, 11.51, 12.11, 11.52, 8.86, 12.28 🗙
	💌 7.82, 9.57, 10.67, 9.54, 9.04, 12.09, 11.17, 7.70 🗙
	🖃 11.52, 8.90, 7.63, 7.52, 9.44, 9.01, 11.21, 7.63 🗙
	💌 9.56, 11.50, 7.90, 9.06, 8.74, 9.78, 8.53, 8.04 🗙
	🖃 11.85, 12.13, 7.93, 11.93, 11.70, 8.05, 9.95, 9.07 🗙
	🖃 11.13, 9.51, 11.43, 10.50, 7.61, 9.94, 11.79, 8.16 🗙

{ ③ } ★ GMgn%TTM - GMgn%PTM

Block select the permutations that are already there. Right click with your mouse and overwrite the existing permutations with the new iterations. Save the new permutations.

🕑} ↓ Pr2BookQ	11.59 9.06 11.80 9.88 12.03 7.82 11.52 9.56 11.85 11.13	
🔊 🕈 GMgn%TTM - G	12.19 11.84 9.58 8.75 7.96 9.57 8.90 11.50 12.13 9.51	Undo
A OCEPSTIM-EPS	9.93 9.78 10.94 12.36 7.91 10.67 7.63 7.90 7.93 11.43	Redo
)} ↓ DbtTot2AstQ	7.83 11.95 8.85 9.66 11.51 9.54 7.52 9.06 11.93 10.50	
🕽 🕇 CurRatioQ- Cur	9.53 11.88 11.65 8.10 12.11 9.04 9.44 8.74 11.70 7.61	Cut
🕽 🕇 AstTurnTTM-As	11.17 9.22 12.44 8.45 11.52 12.09 9.01 9.78 8.05 9.94	Сору
}	11.50 11.23 11.49 10.02 8.86 11.17 11.21 8.53 9.95 11.7	g Paste
} ↓ ShsOutAvgTTM	11.94 9.44 8.56 8.23 12.28 7.70 7.63 8.04 9.07 8.16	Paste as plain text 👚 👩
	1	Delete Paste randomized
ndate Done _	Block Select	Spell-check array from spreadshee
▲ 3	U Permutations	calactical (

Generate the permutations.

Jew 👻 🖞 Select Study	- 6	Save As	🖻 Delete	→ Generate Permutations	→ Previous Results
Studys 🕨 Unclassified	l St	itts Pi	otroski	1	
kingSystem Permutations on Its Piotroski T otal apse					
Filter: Sector		ALL			
Buckets		20			
🖻 🕇 Stitts Piotroski	+	v 11	1.59, 12.19	, 9.93, 7.83, 9.53, 11.17, 11	50, 11.94
		▼ 9.	06, 11.84,	9.78, 11.95, 11.88, 9.22, 11	23, 9.44 🗙
		• 11	.80, 9.58,	10.94, 8.85, 11.65, 12.44, 1	.1.49, 8.56 🗙
		▼ 9.	88, 8.75, 1	2.36, 9.66, 8.10, 8.45, 10.0	2, 8.23 🗙
		• 12	2.03, 7.96,	7.91, 11.51, 12.11, 11.52, 8	3.86, 12.28 🗙
		₹7.	82, 9.57, 1	0.67, 9.54, 9.04, 12.09, 11.	17, 7.70 🗙
		v 11	52, 8.90,	7.63, 7.52, 9.44, 9.01, 11.2	1, 7.63 🗙
		▼ 9.	56, 11.50,	7.90, 9.06, 8.74, 9.78, 8.53	, 8.04 🗙
		v 11		, 7.93, 11.93, 11.70, 8.05, 9	9.95, 9.07 🗙

Click on Run and then click on Toggle Charts. Wait for the optimizer to process all of the permutations.

₽ Ne	w 👻 📴 Select St	udy 🔻 🔊 🖻 Save As 🗯 Delete 🖍 Edit Permutat	ions	► Run	■ Tog	gle Charts	*	Downl	oad	
My St	tudys 🖡 Unclassified	🛛 Stitts Piotroski 🕻	Ð	Run		Turn of				
Perm 🔺	Date Periods 🛛 🔶	Stitts Piotroski 🔶	Opt	imizat	ion an	Charts	:t 🜩	Last 🖨	Delta 🖨	SI
1	01/02/99 10/26/13	11.59, 12.19, 9.93, 7.83, 9.53, 11.17, 11.50, 11.94	1		1					
2	01/02/99 10/26/13	9.06, 11.84, 9.78, 11.95, 11.88, 9.22, 11.23, 9.44								
<u>3</u>	01/02/99 10/26/13	11.80, 9.58, 10.94, 8.85, 11.65, 12.44, 11.49, 8.56								
4	01/02/99 10/26/13	9.88, 8.75, 12.36, 9.66, 8.10, 8.45, 10.02, 8.23								
5	01/02/99 10/26/13	12.03, 7.96, 7.91, 11.51, 12.11, 11.52, 8.86, 12.28								
<u>6</u>	01/02/99 10/26/13	7.82, 9.57, 10.67, 9.54, 9.04, 12.09, 11.17, 7.70								
Z	01/02/99 10/26/13	11.52, 8.90, 7.63, 7.52, 9.44, 9.01, 11.21, 7.63								
<u>8</u>	01/02/99 10/26/13	9.56, 11.50, 7.90, 9.06, 8.74, 9.78, 8.53, 8.04								
9	01/02/99 10/26/13	11.85, 12.13, 7.93, 11.93, 11.70, 8.05, 9.95, 9.07								
<u>10</u>	01/02/99 10/26/13	11.13, 9.51, 11.43, 10.50, 7.61, 9.94, 11.79, 8.16								

Choose what you consider to be the best permutation. In this example, I chose permutation #8.

			Stitts Piotroski										
Perm 🔺	Date Periods	\$		\$	Min 🜩	Median 🜩	Mean 🜩	Max 🜩	First 🗢	Last 🗢	Delta 🖨	Slope 🜩	StdDev 🖨
1	01/02/99 10/26/3	L3			0.78	10.13	9.50	22.20	3.19	22.20	19.02	0.86	5.29
2	01/02/99 10/26/2	L3			1.39	9,40	9.43	20.89	2.95	20.89	17.94	0.83	5.06
3	01/02/99 10/26/3	13)	0.09	9.04	9.39	21.38	2.88	21.38	18.51	0.88	5.39
4	01/02/99 10/26/3	L3			0.56	9.04	9.38	21.04	2.35	21.04	18.69	0.88	5.36
5	01/02/99 10/26/3	L3			0.26	9.46	9.39	21.22	3.11	21.22	18.11	0.85	5.21
<u>6</u>	01/02/99 10/26/3	L3			1.77	9,96	9.41	21.69	2.71	21.69	18.98	0.88	5.35
7	01/02/99 10/26/3	L3			0.50	9.15	9,42	21.21	2.84	21.21	18.37	0.87	5.32
<u>8</u>	01/02/99 10/26/3	L3			0.93	9.68	9,47	22.30	3.04	22.30	19.26	0.88	5.37
2	01/02/99 10/26/3	L3			1.71	9.59	9.43	21.18	3.03	21.18	18.15	0.84	5.18
<u>10</u>	01/02/99 10/26/3	L3			0.80	9.99	9.40	22.21	2.61	22.21	19.60	0.88	5.39

Now return to the spreadsheet, block select iteration #8 from the randomized data array, and copy it.

	• (7	J* =ROON	D(\$D7+\$O\$	2"(RAND(J-0.5)/10,5	053)			X	Cut
E C	D E	F	G	Н	1	J	К	L	M	R S
									(2)	
								20 226 22		
								Sensitivit	ty (%)	Сору
								Roundoff ()igits:	Paste Spec Selection
15 No	des (Max.) 10	Iterations (I	lay)							Insert
10 110					Wei <u>a</u> h	t / Itera <u>tio</u>	n _			Delete
Node	Reference	1	2	3	4	5	6	7		Clear Co <u>n</u> tents
1	10.3827	11.1121	9.9948	9.4408	10.2020	9.1322	8.0054	7.9458	11.32	Filter
2	10.3710	12.1532	9.0081	12.6383	11.9274	10.1069	9.3649	10.0716	12.20	1010 <u>0</u> 15
3	10.1040	8.4295	11.1321	10.0216	8.3741	10.1586	11.5589	8.3058	8.91	2 <u>0</u> rt P
4	9.9769	10.4302	9.7576	10.5786	10.2365	11.0498	10.0314	9.3524	8.63 일	Insert Co <u>m</u> ment
5	10.1176	8.5824	11.7551	11.1810	9.5583	8.5624	9.1027	9.6853	8.09 🤗	Format Cells
6	9.7446	11.8742	8.6818	9.0931	7.3910	7.31	.0349	8.4149	10.89	– Pick From Dron-down List
7	10.3009	11.8921	12.2855	11.5298	11.9294	8.30 🤇	1).5151	11.7804	9.60	Define Name
8	9.7126	7.2700	7.9126	11.7945	10.7973	o ner	3010	9.5340	7.63	
9	0.0000	0.0000	0.0000	0.0000	0.0000	Oth ite	select		o.oo 록	Hyperlink
10	0.0000	0.0000	0.0000	0.0000	0.0000	ourrite	rauon	0.0000	0.0000	
11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00 ^{Ari}	al • 10 • A A \$ • % • 🔤
12	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00 B	I = 💩 + 🗛 + 🔆 + 🐝 🐝 🍼
13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.0000
14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.0000
15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.0000

Paste iteration #8 into the reference node array.

This completes one optimization cycle.

Hitting The Brick Wall

This seems to be pretty easy although a bit monotonous. But you will find that it doesn't take too long before you run into a brick wall. The performance of the top bucket will stop increasing no matter how many times you generate new permutations.

At this point in time you may need to shake things up a little bit. This is kind of like being in a maze, running into a dead end and having to backtrack before you can go forward again.

Try using a different tactic for deciding on the "best" permutation. I find that selecting the lowest first bucket while ignoring the top bucket for one or two iterations often works. You might also consider upping the sensitivity to 70% until you find a new "best" permutation.

15 Nod	es (Max.), 10 I	terations (M	lax.)				S	Sensitivit, loundoff D	y (%) igits:		50 10 20 30
			/		Weigh	t / Iteratio	n				50
Node	Reference	1	2	3	4	5	6	7	8	9	70 🔺
1	10.6943	12.6987	9.3999	12.4222	10.0057	11.9048	11.8589	8.3408	9.7652	11.3024	13.0 1
2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0
3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	e 000e	9 0404	1 2020	6 0765	7 0711	9 1667	£ 0072	A 7147	1 0061	0 1220	6 9671

Pruning Nodes

One of the interesting aspects of this optimization process is that you can eliminate nodes (stock factors) without sacrificing performance. Think of this as pruning a plant, cutting out the dead leaves, branches allowing the plant's energy to be focused on the healthy parts.

The time to prune is when a reference weight decreases to about 1 (from the original 10).

			1		Weigh	it / Iteratio	n				
Node	Reference	1	2	3	4	5	6	7	8	9	10
1	14.9543	16.3100	12.8632	17.0015	13.3853	14.6973	14.1632	12.6196	15.3276	13.3705	14.5377
2	2.9938	3.2861	4.0244	1.9659	3.5905	1.3295	4.1167	3.2741	0.6670	3.0871	3.1597
3	2.3156	4.0130	3.3490	1.9846	4.7300	3.9908	1.7646	3.6552	3.1950	0.1366	4.3330
4	5.6671	7.5038	7.9233	7.2758	7.4925	7.8271	4.5384	4.7778	5.0167	7.9613	5.1651
5	0.1763	1.8448	0.5701	1.2218	0.3853	1.0507	2.3586	0.1084	0.0997	0.1781	1.2030
6	10.0611	10.7830	8.8583	12.4182	8.5601	7.7350	10.0188	8.3795	12.2871	11.9686	12.1345
7	12.3027	12.1263	11.7541	14.4810	12.0404	11.2399	13.0911	13.7579	13.6234	10.7123	12.5339
8	11.3757	8.9722	9.1500	10.3179	12.7062	13.0294	11.6828	9.6474	13.8647	12.7307	12.3536
9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

15 Nodes (Max.), 10 Iterations (Max.)

As you can see from the example above, node 5 has a reference weight of 0.1763. It is time to eliminate this node. This is done by zeroing out the reference weight and the corresponding randomized data. Note that Nodes 2 and 3 are almost ready to be pruned as well, but not this time around.

	30k (287) S				Weigh	t / Iteratio	n				
Node	Reference	1	2	3	4	5	6	7	8	9	10
1	14.9543	16.3100	12.8632	17.0015	13.3853	14.6973	14.1632	12.6196	15.3276	13.3705	14.5377
2	2.9938	3.2861	4.0244	1.9659	3.5905	1.3295	4.1167	3.2741	0.6670	3.0871	3.1597
3	2.3156	4.0130	3.3490	1.9846	4.7300	3.9908	1.7646	3.6552	3,1950	0.1366	4.3330
4	5.6671	7.5038	7.9233	7.2758	7.4925	7.8271	4.5384	4.7778	5.0167	7.9613	5.1651
5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
6	10.0611	10.7830	8.8583	12.4182	8.5601	7,7350	10.0188	8.3795	12.2871	11.9686	12.1345
7	12.3027	12.1263	11.7541	14.4810	12.0404	11.2399	13.0911	13.7579	13.6234	10.7123	12.5339
8	11.3757	8.9722	9.1500	10.3179	12.7062	13.0294	11.6828	9.6474	13.8647	12.7307	12.3536
9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

15 Nodes (Max.), 10 Iterations (Max.)

Once the node is zeroed out then continue on with the same steps as before. The optimizer can handle the zero weights.

Pruning nodes often results in a performance setback with the last bucket dropping in value. But it is usually made up fairly quickly with subsequent optimization iterations.

When you do achieve a new high for the last bucket it is a good idea to set aside the reference weights for future use. Simply copy and paste into an unused section of the spreadsheet. You can always come back to these numbers at a later time if need be.

					Weigh	t / Iteratio	n						
ode	Reference	1	2	3	4	5	6	7	8	9	10		
1	10.2529	9.7203	7.7482	8.6547	13.3543	13.6212	7.1741	8.0610	11.3500	13.6614	9.6826		10.2
2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
4	7.4351	8.6489	7.8951	5.2059	4.5953	4.7132	6.5669	4.7064	10.5503	4.8384	7.8087		7.43
5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
6	7.4381	5.6647	4.6553	5.8003	4.5245	9,0254	5.0463	4.3438	10.7415	7.0335	6.7277	1.00	7.43
7	18.3135		18.6923	17.8851	21.7606	58	14.9232	17.7709	20.4440	979	16.0120		18.3
8	6.5182	9.878	6.5357	9.7544	9.6964	1.0240	3.4435	3.7635	4.6309	.1947	5.8188		6.5
9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		

So that is the optimization process. Next post I'll outline how to finish it off, create the final ranking system, and as a bonus, create ten (or more) noisy ranking systems for robustness testing of future models.

The Final Ranking System

November 2, 2013

Reduce The Sensitivity Setting

In the last post it was determined that enough optimization had been performed and it was time to wrap up this project. At this point in time I suggest performing a few more optimization cycles while reducing the sensitivity from 50 down to 40, 30, 20 and finally 10. Doing so will find a local maximum. The optimization steps are the same as described in the last post. You only need to change the sensitivity setting in the spreadsheet.

Generate Noisy Test Ranking Systems

Once this has been done and the reference weights have been updated and considered to be final then the next step is to generate a set on noisy ranking systems for future test purposes. This is accomplished by doing a manual recalculate on the spreadsheet, then copying the randomized data into the ranking system optimizer permutations, and finally running the ranking system optimizer.

The ten permutations should be saved as individual ranking systems. This is done by selecting the permutation as shown below.

				Stitts Piotroski									
Perm 🔺	Date Periods 🛛 🖨	Stitts Piotroski	Min 🜩	Median 🜩	Mean 🜩	Max 🗢	First 🖨	Last 🖨	Delta 🖨	Slope 🜩	StdDev 🗢		
1	(99 10/26/13	10.35, 0.00, 0.00, 7.71, 0.00, 7.07, 17.70, 6.58	0.46	9,21	9.58	23,30	1.54	23,30	21.76	0.85	5.43		
2	01/02/99 10/26/13	10.62, 0.00, 0.00, 7.89, 0.00, 7.35, 18.14, 5.99	0.44	9.52	9.59	22.98	1.66	22.98	21.32	0.84	5.36		
3	01/02/99 10/26/13	10.21, 0.00, 0.00, 7.85, 0.00, 7.42, 17.89, 6.16	0.76	9.29	9.60	23.08	1.58	23.08	21.50	0.84	5.35		
4	01/02/99 10/26/13	10.70, 0.00, 0.00, 7.66, 0.00, 6.99, 17.79, 6.81	0.72	9.19	9.57	23.39	1.34	23.39	22.05	0.86	5,48		
<u>5</u>	01/02/99 10/26/13	10.44, 0.00, 0.00, 7.76, 0.00, 7.16, 18.43, 6.23	0.33	9.47	9,59	23.40	1.67	23.40	21.73	0.84	5.41		
<u>6</u>	01/02/99 10/26/13	10.42, 0.00, 0.00, 7.82, 0.00, 7.57, 18.28, 5.99	0.53	9,42	9.60	23.05	1.80	23.05	21.25	0.84	5.34		
Z	01/02/99 10/26/13	10.89, 0.00, 0.00, 7.62, 0.00, 7.35, 18.36, 6.48	0.33	9.28	9.59	23.48	1.59	23.48	21.89	0.85	5.44		
<u>8</u>	01/02/99 10/26/13	10.74, 0.00, 0.00, 7.52, 0.00, 7.31, 17.72, 6.41	0.38	9.27	9.59	23.40	1.47	23.40	21.93	0.86	5.46		
<u>9</u>	01/02/99 10/26/13	10.54, 0.00, 0.00, 7.49, 0.00, 7.73, 18.47, 6.19	0.31	9,50	9.61	23.68	1.65	23,68	22.03	0.85	5,44		
<u>10</u>	01/02/99 10/26/13	10.52, 0.00, 0.00, 7.63, 0.00, 7.10, 17.64, 6.59	0.39	9.44	9.58	23.43	1.56	23.43	21.87	0.86	5.46		

A window will pop-up where you enter the name of the ranking system. Once this has been done then click on Save. You can then close the window.

New Stock Ranking System

Name (1	Stitts Piotroski 5% Noise Run :
Ranking Method	Percentile NAs Negative
Visibility	Private
Category	Unclassified [

Generate the Final Ranking System

After all ten ranking systems are saved then the final ranking system will be created. Start by block selecting the reference weights, then copying them.

15 Nodes (Max.), 10 Iter	rations (Max.)								
			Weigh	t / Iteratio	n				
 Node Referer Arial	- 10 - A A + % - %	• •	a. 4	5	6	7	8	9	10
1 10.4 p 7	= Λ · Δ · Π · •0	.00	D.7047	10.4374	10.4158	10.8890	10.7445	10.5417	10.5202
2 0.0000	= <u>✓</u> <u>↔</u>	→.0 V	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3 0.0	<u>, , , , , , , , , , , , , , , , , , , </u>	9000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4 7.4 ^{6 Cu}	Ţ	461	7.6572	7.7581	7.8218	7.6201	7.5204	7.4855	7.6292
5 0.0 🗎 으	ру	000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
6 7.3 🖺 Pa	sti 👝 🥵	216	6.9853	7.1561	7.5651	7.3473	7.3127	7.7309	7.0952
7 18.0	2	915	17.7875	18.4259	18.2821	18.3601	17.7153	18.4683	17.6395
8 3 Pa	ste Sh CODV	645	6.8052	6.2256	5.9894	6.4777	6.4080	6.1863	6.5860
		000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ins Ins	sert	000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Block select th	e 8	000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
12 reference weig	ht itents	000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
¹³ nodes	2	000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
14 U.U	1	000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Now block select the previous permutations in the Edit Permutations screen in the ranking system optimizer.

Add Permutation for Stitts Piotroski

New Weight Permutations

10.35	10.62	10.21	10.70	10.44	10.42	10.89	10.74	10.54	10.52	
0.00 0.0	0.00 0.00	0.00 0.0	00 0.00 0.0	0.00 0.0	0					
0.00 0.0	0.00 0.00	0.00 0.0		0.00 0.00	0					
7.71 7.8'	9 7.85 7.66	57.767.8	32 7.62 7.5	2 7.49 7.6	3	8				<u>y</u> y
0.00 0.0	0.00 0.00	0.00 0.0	0.00 0.0	0.00 0.00	0	Undo				
7.07 7.3	5 7.42 6.99	7.16 7.5	57 7.35 7.3	1 7.73 7.1	0	Redo				
17.70	18.14	17.89	17.79	18.43	18.28	CUE				
6.58 5.9'	9 6.16 6.81	6.	99 6.48 6.4	1 6.19 6.5 [.]	9	- Cut				
						Сору				
		ank Cal	ant			Paste	6			
	BI	OCK Sel	tations			Paste	as plain text	t 🤞		
	all	pennu	lations			Delet	Past	e Refere	nce Weights	
	10.35 0.00 0.0 0.00 0.0 7.71 7.8 0.00 0.0 7.07 7.3 17.70 6.58 5.9	10.35 10.62 0.00 0.00 0.00 0.00 7.71 7.89 7.85 7.66 0.00 0.00 0.00 0.00 7.07 7.35 7.42 6.99 17.70 18.14 6.58 5.99 6.16 6.81 Bl all	10.35 10.62 10.21 0.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.0 7.71 7.89 7.85 7.66 7.76 7.8 0.00 0.00 0.00 0.00 0.00 0.0 7.07 7.35 7.42 6.99 7.16 7.5 17.70 18.14 17.89 6.58 5.99 6.16 6.81 6.4 Block Sel all permu	10.35 10.62 10.21 10.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	10.35 10.62 10.21 10.70 10.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	10.35 10.62 10.21 10.70 10.44 10.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	10.35 10.62 10.21 10.70 10.44 10.42 10.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.71 7.89 7.85 7.66 7.76 7.82 7.62 7.52 7.49 7.63 0.00 Redo Redo Cut Copy Copy Copy Paste Paste Paste Delet Delet Delet Delet Delet Delet Delet Delet Del	10.35 10.62 10.21 10.70 10.44 10.42 10.89 10.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.71 7.89 7.85 7.66 7.76 7.82 7.62 7.52 7.49 7.63 0.00 Redo Redo Cut Cut Copy Copy Paste State Paste Paste Delete Delete Delete Delete Delete Delete Delete Delete Delete Delete	10.35 10.62 10.21 10.70 10.44 10.42 10.89 10.74 10.54 0.00 <td>10.35 10.62 10.21 10.70 10.44 10.42 10.89 10.74 10.54 10.52 0.00<!--</td--></td>	10.35 10.62 10.21 10.70 10.44 10.42 10.89 10.74 10.54 10.52 0.00 </td

CLOSE 🗙

Click on the Update button to save the permutations.

Add Permutation for Stitts Piotroski

New Weight Permutations

{()) ↓ Pr2BookQ	10.4423
🚯 🕇 GMgn%TTM - G	0.0000
Image: Contemporary Contemp	0.0000
🔞 🖡 DbtTot2AstQ	7.4642
🔞 🕇 CurRatioQ- Cur	0.0000
🚯 🕇 AstTurnTTM-As	7.3575
{ () } ↑ ROA%TTM - RO	18.0426
{()} ↓ ShsOutAvgTTM	6.3142
Update Done	

Click on the Generate Permutations menu item.

s 🕨 Unclassified	🗐 Stitts Piotroski 🧧
stem Permutations on	
l eriods T.	01/02/99 10/26/13
al	
g Method	Percentile NAs Negative
nce Frequency	Four Weeks
;e	All Fundamentals
1in Price	3.0
ector	ALL
3	20
titts Piotroski	+ 10.44, 0.00, 0.00, 7.46, 0.00, 7.36, 18.04, 6.31
{ () ↑ GMan%TTM - G	/ap%PTM
(O) ↑ OCEPSTTM-EPS	PExclXorTTM
(0) ↓ DbtTot2Ast0 - (DbtTot2AstPYO
<pre>{()} ◆ CurRatioO- Cur</pre>	RatioPYO
<pre>{(i)} ← ActTurnTTM_Act</pre>	TuroPTM
	NOLDTM
too Trow of the FROM	20 Million Di

Run the ranking system optimizer.

HINT: use SHIFT ke

Once the optimizer has finished then click on permutation #1 as shown below. Note: there should only be one permutation.

		🗐 St	itts	Piotro	ski						
Perm 🔺	Date Periods 🔹 🔶	Annualized Returns	¢ Min ♦	Median 🖨	Mean 🖨	Max 🖨	First 🜩	Last 🖨	Delta 🖨	Slope 🖨	StdDev 🗢
	01/02/99 10/26/13		0.13	9.35	9,60	23.72	1.68	23.72	22.03	0.85	5.46

Select **Save As** to rename the final ranking system.

Check to make sure you have all eleven (11) ranking systems as shown below.

Stitts Piotroski 5% Noise Run #1 Stitts Piotroski 5% Noise Run #10 Stitts Piotroski 5% Noise Run #2 Stitts Piotroski 5% Noise Run #3 Stitts Piotroski 5% Noise Run #4 Stitts Piotroski 5% Noise Run #5 Stitts Piotroski 5% Noise Run #6 Stitts Piotroski 5% Noise Run #7 Stitts Piotroski 5% Noise Run #8 Stitts Piotroski 5% Noise Run #8 Stitts Piotroski 5% Noise Run #9 Stitts Piotroski 5% Noise Run #9

Performance Check

3 of the 8 stock factors have been deleted from the original All Stars: Piotroski. The performance in the last bucket on the right has increased from 22% to 23.7% for 4 week rebalance. This doesn't sound like much but consider that the last bucket holds approximately 150 stocks and that the original ranking system was already quite an optimal configuration. The performance for weekly rebalance also improved.

