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Perhaps the most important defining 
characteristic of factor models is that 
they must explain asset behavior to 
a sufficient degree given a restricted 

set of explanatory variables. Given this, the 
primary challenge for anyone building a 
factor model is to settle on a set of factors that 
on one hand can adequately explain port-
folio behavior over time, and on the other 
is simple enough to remain computationally 
tractable. In this way, the challenge faced in 
building a factor model is the same faced by 
scientists when building theories to explain 
natural phenomena, in which the trade-off 
between informative power and simplicity is 
also a fundamental consideration.

Although it is generally accepted that 
factor models should be built based on the 
foregoing principles, we often see practitio-
ners developing and using factor models that 
deviate from them in significant ways. This 
is especially the case with the models that 
underlie many commercially available risk 
platforms, which often include hundreds of 
correlated variables that are presented as fac-
tors. The reason why commercial risk plat-
forms take a maximalist approach to factor 
modeling is likely rooted in their motivation 
to provide a comprehensive picture of the 
risk exposures driving portfolio behavior. 

It is also rooted in their use of linear models. 
A linear factor model that restricts itself to 
a small number of factors faces the risk of 
providing an inadequate picture of portfolio 
behavior over a given measurement period. 
As a result, commercial risk platforms try to 
cover their bases by including a multitude 
of factors so that no exposure is seemingly 
unaccounted for. Despite this technical 
maneuver, the resulting frameworks are usu-
ally not genuine linear factor models, because 
of their size and the presence of correlated 
variables, nor are they maximally informa-
tive, because of their inability to account for 
the nonlinear behavior of and/or interaction 
effects among factors.

A natural response to the shortcom-
ings of linear factor models is to recommend 
the use of nonlinear factor models; however, 
parametric nonlinear models have a number 
of shortcomings. First, the structure of the 
latter models is often heavily dependent on 
the sample data. As the sample expands or 
contracts, we at times f ind that the func-
tion specified by the model changes, some-
times dramatically. Second, unlike linear 
models, parameter estimates cannot always 
be derived analytically. Rather, solutions are 
often found using iterative methods, in which 
initial values are posited for each unknown 
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target variable before various optimization techniques 
are invoked to home in on a solution. Although iterative 
methods can be useful, the optimizations that drive them 
may ultimately fail to converge if the initial values are 
too distant from possible solution values. Initial values 
that are remote from optimal values can also cause con-
vergence to a local solution rather than a global solution.

As a remedy to the drawbacks of both linear models 
and parametric nonlinear models, in this article the 
authors present a factor framework based on a machine 
learning algorithm known as random forests (RFs) (Ho 
1995, 1998; Breiman 2001). The authors show how to 
use the RF algorithm to produce models that, within 
a single framework, provide information regarding 
the sensitivity of assets to factors broadly analogous to 
those generated by more commonly used frameworks, 
but with a signif icantly higher level of explanatory 
power. Moreover, RF-based factor models are able to 
account for the nonlinear relationships, discontinuities 
(e.g., threshold correlations), and interactions among the 
variables, while dispensing with the need for complex 
functional forms or additional interaction terms (thus 
remaining in harmony with the principle of parsimony). 
In the last section of the article, the authors demon-
strate how the framework can be combined with another 
machine learning algorithm known as association rule 
learning (ARL) to build effective trading strategies, using 
a sector rotation strategy as an example. 

BASIC FEATURES OF FACTOR MODELS

Investment factor models are supposed to provide 
insight into the primary drivers of portfolio behavior. 
Formally, there are various ways to build a factor model 
(for a basic overview, see Connor 1995). Perhaps the 
simplest way is via an ordinary least squares (OLS) 
regression, in which the portfolio return is the depen-
dent variable, and the risk factors are the independent 
variables. As long as the independent variables have suf-
ficiently low correlation, different models will be statis-
tically valid and explain portfolio behavior to varying 
degrees. In addition to revealing what percentage of a 
portfolio’s behavior is explained by the model in ques-
tion, a regression will also reveal the sensitivity of a 
portfolio’s return to each factor’s behavior. These sen-
sitivities are expressed by the beta coefficient attached 
to each factor. 

Factor sensitivities and measures of explanatory 
power are the defining characteristics of factor models 
and are present in other common frameworks, such as 
those based on principal component analysis (PCA) (see 
Jolliffe 2002). As we show later, factor models based on 
machine learning can also describe the sensitivity of 
variables to the factors that explain them and provide 
information relating to the overall explanatory power of 
a given model. However, as previously mentioned, they 
also offer some distinct advantages over more traditional 
frameworks, such as the ability to capture nonlinear 
behavior and the interaction effects between factors. 
Additionally, RF models are generally less inf luenced 
by correlations between variables. Indeed, the ques-
tion of multicollinearity does not enter into the picture 
when building an RF model in the way it does in an 
OLS regression.1 One reason for this is that unlike OLS 
regression, RF models are estimated without requiring 
the inversion of a covariance matrix. Another distinct 
advantage of RF models is that they do not have strict 
parametric assumptions, nor do they rely on other time 
series assumptions such as homoskedasticity or indepen-
dence of errors. Nevertheless, although RF models are 
relatively rule-free, it is our view that a fair amount 
of pre-model work should be done to ensure that the 
inputs into the model make sense from the standpoint of 
both investment relevance and economic coherence and 
possess a sufficient level of factor uniqueness to produce 
models that are both practical and free from explanatory 
redundancies. Although factor selection is an impor-
tant aspect of building any factor model, it is especially 
critical when using machine learning-based methods.

MACHINE LEARNING AND THE RANDOM 

FOREST ALGORITHM

Machine learning refers to a collection of computa-
tional techniques that facilitate the automated learning 
of patterns and the formation of predictions from data. 
As such, machine learning methods can be used to 
build models with minimal human intervention and 
pre-programmed rules. Machine learning algorithms are 
(very) broadly classified as either supervised or unsupervised 

1 Those concerned with multicollinearity may benefit from 
using PCA or LASSO (least absolute shrinkage and selection oper-
ator) in the pre-model stage of an analysis to aid in generating factors 
that are unique.
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learning algorithms. Unsupervised learning algorithms 
include those encompassing clustering and dimension 
reduction, in which the goal is to draw inferences and 
define hidden structures from input data. Unsuper-
vised algorithms are distinguished by the fact that the 
input data are not categorized or classif ied. Rather, 
the algorithm is expected to provide a structure for 
the data. A well-known example of an unsupervised 
learning algorithm is k-means clustering (Lloyd 1982). 
In contrast, supervised learning (including reinforce-
ment learning) algorithms use input variables that are 
clearly demarcated. With supervised learning, the goal 
is to produce rules and/or inferences that can be reli-
ably applied to new data, whether for classification or 
regression-type problems. The RF algorithm used in 
this article is an example of a supervised learning algo-
rithm and has been shown to be extremely effective 
in a variety of scientific applications, such as medical 
diagnosis, genome research, and cosmology.

Some machine learning algorithms, including RF, 
incorporate decision trees, a tool that is helpful in ana-
lyzing and explaining complex datasets. For regression-
type problems, decision trees start from a topmost or 
root node and proceed to generate branches, with each 
branch containing a condition, and a prediction in the 
form of a real-valued number, given the condition in 
question. Trees are composed of a series of conditions 
attached to decision nodes, which ultimately arrive at a leaf 
or terminal node whose value is a real number.2 The latter 
value represents a predicted value for a target variable 
given a set of predictor values. In Exhibit 1, we show a 
simple example of a decision tree that analyzes the rela-
tionship between monetary policy and macroeconomic 
conditions.

Decision trees can be constructed using var-
ious procedures (e.g., ID3, CHAID, MARS). In this 
article, we use a procedure known as CART (classifica-
tion and regression tree, a methodology developed by 
Breiman et al. 1984). CART uses an algorithm called 
binary recursive partitioning, which divides the input space 
into binary decision trees. In this procedure, features are 
evaluated using all sample values, and the feature that 
minimizes the cost function at a specific value is chosen 
as the best split. Recursive partitioning takes place at 

2 Several stopping criteria can be used to halt the tree-building 
process—for example, a minimum number of samples in a leaf, the 
depth of the tree, and the total number of leaves.

each level down the tree, and the value at each leaf of 
the tree is the average of all the resulting observations. 

In Exhibits 2, 3, and 4, we proceed to describe 
binary recursive partitioning and the RF algorithm in 
formal detail. In doing so, we use (with some modifica-
tion) the descriptions provided by Cutler, Cutler, and 
Stevens (2012). We begin with the definition of binary 
recursive partitioning in Exhibit 2.

RF uses an ensemble of decision trees in con-
junction with the CART technique. Each tree in the 
ensemble is constructed via bootstrapping, which 
involves resampling from the data with replacement 
to build a unique dataset for each tree in the ensemble. 
The trees in the ensemble are then averaged (in the case 
of regression), resulting in a final model. The bootstrap 
aggregation of a large number of trees is called bagging.3 
We describe the RF algorithm formally in Exhibit 3.

Predicted values of the response variable for regres-
sion4 at a given point x are given by

 ∑( ) ( )=
=

ˆ 1 ˆ
1

f x(
J

h (
j

J

j  

where h xj
ˆ ( )x  is the prediction of the response variable at x 

using the jth tree (This formula concludes the algorithm 
in Exhibit 3).

When a bootstrap is conducted, some observa-
tions are left out of the bootstrap. These are called 
out-of-bag (OOB) data and are used for measuring 
estimation error and variable importance. If trees are 
large, using all the trees may produce a false level of 
conf idence in the predictions of the response vari-
able for observations in the training set D. To remedy 
this risk, the prediction of the response variable for 
training set observations is done exclusively with trees 
for which the observation is OOB. The resulting 

3 Bagging is useful because it generally reduces overfitting 
and has a lower variance when compared to processes that only use 
individual decision trees. An individual tree may end up learning 
highly idiosyncratic relationships among the data and hence may end 
up overfitting the model. Averaging ensembles of trees provides a 
better opportunity to uncover more general patterns and relation-
ships between variables. Overfitting can also be addressed by using 
simpler trees (i.e., those with a lower number of splits).

4 For classif ication, the prediction values are given by

∑= ∑ˆ ) argmax ˆ ( ) ).
1
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predictions, f ittingly labeled out-of-bag predictions, are 
defined in Exhibit 4.

For regression5 with squared error loss, generaliza-
tion error is generally measured using the OOB mean 

squared error (MSE): ∑= ∑ =

1
( ˆ ( )) .2

1
MSE

N
y f−OOB i OOBff ii

N

An RF analysis produces two basic outputs. The 
first output is simply a set of conditional values—for 
example, a set of factor returns and a predicted value for 
a dependent variable such as a portfolio return, given the 
posited factor returns. The second output is something 

5 For classification with zero-one loss, the generalization error 

rate is given by ∑= ≠∑ =

1
( ˆ )).

1
E

N
I y( f x(OOB i OOBff ii

N

called feature importance (FI). As its name implies, FI 
indicates the importance of each explanatory variable 
in contributing to the predicted value of the dependent 
variable in question. 

We calculate FI using mean decrease accuracy, which 
measures the degree to which the predictive power of 
the model would be diluted if the values for the explana-
tory variable in question were randomly changed. The 
mechanics of FI measurement work as follows: Once the 
jth tree is generated, the values for the predictor variables 
are randomly permuted in the bootstrapped sample, and 
the prediction accuracy is recalculated. For regression, 
the FI for the observation is calculated as the difference 
between the MSE of the predictions using the permuted 

E X H I B I T  1
Example of a Decision Tree
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E X H I B I T  2
Algorithm for Binary Recursive Partitioning

Σ

Note: For classification, the prediction values are given by ∑= ∑ˆ( ) argmax ( )=
1

h x( I( yy k∑ =1
I y( ii

n
 where I(yki = y) = 1 if yki = y and 0 otherwise.

Source: Cutler, Cutler, and Stevens (2012).

E X H I B I T  3
Algorithm for Random Forests

J = 1 to j:

1. Draw a bootstrap sample  j of sizej N fromN .
2. Using the bootstrap sample  j as the training data, fit a tree using binary recursive partitioning (Exhibit 2):

a. Start with all observations in a single node.

b. Repeat the following steps recursively for each unsplit node until the stopping criterion is met:
  i. Select m predictors at random from the p available predictors.

ii. Find the best binary split among all binary splits on the m predictors from step i.

iii. Split the node into two descendant nodes using the split from step ii.

Let = {(x(( 1, y1), ..., (x(( n, yn)} denote the training data, with xi = (x(( i,1, ..., xi,p, )T.

Source: Cutler, Cutler, and Stevens (2012).

E X H I B I T  4
Algorithm for Out-of-Bag Predictions

Let  j denote thej jth bootstrap sample and hjh (x(( ) denote the prediction x from the jth tree, for

1. Let i = { j{{ : (x(( i, yi) ∉ j}, and let JiJ  be the cardinality of i (Exhibit 3).

2. Define the OOB prediction for regression6 at xi to be fOOBff (x(( i) =

j = 1, ...,j J. For JJ i = 1 to N:NN

∑j∑ ∈ i
hjh (x(( i).JiJ

1

ˆ

ˆ ˆ

Note: For classification, the OOB prediction is given by 
J∑= ∑ ∈

ˆ ) argmax ( ˆ ( ) ),f x( I h( y=)OOBff i y) argmax j i(
j

j
 where ˆ )h x(j i((  is the prediction of the response variable at 

xi using the jth tree.

Source: Cutler, Cutler, and Stevens (2012).
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data and the MSE of the predictions using the original 
data: −( ) .FI M=) SEMM MSEj OOB OOBPermuted

6

Next, a normalization is generally conducted to 
allow an assignment of a relative FI (RFI) value to each 
feature. The normalization is accomplished by adding 
the FI values for each factor in a single tree and dividing 
that value into the FI value for each factor. This will 
yield a cross section of FI values that sum to unity. This 
operation is repeated for each tree, and the normalized 
FI (NFI) values are then averaged across all the gener-
ated trees to produce an RFI value for a given feature 

k—that is, 
∑

= =RFI kFF
NFI kFF

J
j

J

j
( )k

( )k
1 . The RFIs will also 

fall in the range [0,1] and sum to unity. As we shall 
see in the forthcoming sections of the article, the RFI 
measure plays a pivotal role in building and interpreting 
RF-based approaches to factor modeling.

BUILDING FACTOR MODELS USING 

RANDOM FORESTS

Factor models are generally articulated as linear 
models despite the drawbacks highlighted earlier. Linear 
models are preferred by practitioners because they gen-
erally present readily understandable and interpretable 
analysis. In contrast, machine learning approaches, 
although useful in uncovering the nonlinear behavior 
of and interaction relationships among variables, are 
often articulated in a way that makes their output unin-
tuitive, and hence unattractive, to many investment pro-
fessionals. Nonetheless, as we shall demonstrate, it is 
possible to interpret the results of an RF factor analysis 
in a way that is both tractable and practical. 

To frame our discussion, we use a variant of 
the well-known Fama–French–Carhart (FFC) equity 
factor model (Fama and French 1992, 1993; Carhart 
1997). The FFC model is a multifactor extension of 
the capital asset pricing model (CAPM) (Treynor 1961; 
Sharpe 1964; Lintner 1965; and Mossin 1966), where 
the market represents the sole source of systemic risk. 
The FFC model extends the CAPM framework by 

6 For classif ication, FI(i) = −E EOOB OOBPermuted
. We note that 

although we have chosen to use MSE as our operative measure of 
feature importance, it is not the only one available. Other com-
monly used metrics include mean absolute error, the Gini index, 
and entropy.

introducing three new factors in addition to the market 
factor: the size factor (small-cap stock returns minus 
large-cap stock returns), value (high book-to-price 
stock returns minus low book-to-price stock returns), 
and momentum (high-returning stocks minus low-
returning stocks).7 Both the CAPM and the FFC are 
typically expressed as linear models. Thus, the RF 
variant of the FFC presented here provides a counter-
point to its traditional representation.

We use the FFC model to explain the performance 
of the 10 primary sectors of the stock market, with each 
sector represented by its respective Dow Jones index. 
In an RF model, the FFC factors function as features 
that we use to predict return values for each of our 
sectors. It is thus possible to examine how various fac-
tors inf luence the predicted values for a target variable 
when the latter takes on different values. A natural way 
to do this is to divide the predicted sector returns into 
percentiles and observe the value that factor returns 
take at each of them. Here we select observations that 
map to the 10th, 25th, 50th, 75th, and 90th percentile 
values of the target variable, then observe how each 
factor’s inf luence on the predicted value of the target 
variable differs at each percentile.8 Doing this produces 

7 The following are detailed factor descriptions obtained from 
Ken French’s website (http://mba.tuck.dartmouth.edu/pages/fac-
ulty/ken.french/data_library.html):

• Rm − Rf  , the excess return on the market, is the value-weighted 
return of all CRSP firms incorporated in the United States 
and listed on the NYSE, AMEX, or NASDAQ that have a 
CRSP share code of 10 or 11 at the beginning of month t, 
good shares and price data at the beginning of t, and good 
return data for t minus the one-month Treasury bill rate. 

• SMB (small minus big) is the average return on three small 
portfolios minus the average return on three big portfolios: 

= +

− + +
3

     
3

SMBMM
Small value Small neutral S+ mall growth

Big value Big neutral Big growth  

• HML (high minus low) is the average return on two value 
portfolios minus the average return on two growth portfolios: 

= +

− +
2

2

HMLMM
Small value Big value

Small growth Big growth  

• Momentum is the average return on two high prior return port-
folios minus the average return on two low prior return port-

folios: = + − +   
2 2

Mom
Small h  igh Big highi Small l  ow Big low

8 It is also possible to organize the explanatory variables into per-
centiles and investigate how the predicted values for the target variable 
change in response to significant shifts in the values of the predictors.
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information regarding the sensitivity of sector returns 
to factor returns that is similar to that provided by a 
quantile regression (Koenker 2005). Observing variable 
behavior across percentiles is useful because doing so 
often reveals asymmetric relationships between factors 
and target variables within a set of observations.

In Exhibit 5, we show the returns for each FFC 
factor at different percentiles, as well as the predicted 
equity sector return. We also show the RF model R2 
value and the OLS R2 value for each sector. As the exhibit 
shows, the R2 produced by the RF model for each sector 
is, in general, significantly higher than that produced 
using an OLS regression. We also see that examining 
sector returns at different percentiles allows us to observe 
the varying inf luence of the FFC factors as the level of the 
predicted sector returns changes. In some cases, we see 
significant divergences between sector and factor returns. 
For example, for the consumer staples sector, at the 10th 
and 25th percentiles, all of the FFC factor returns are 
significantly more negative than the sector’s predicted 
returns. One can interpret this result as reinforcing the 
sector’s reputation as a defensive “low beta” sector. The 
opposite is true for the financials and materials sectors, 
whose predicted 90th percentile returns are significantly 
higher than the FFC factor returns. 

In Exhibit 6, we show the RFI of each factor. 
Again, a factor’s RFI indicates its importance in pre-
dicting sector returns when compared to the other fac-
tors in a set. Because RFI values sum to unity, they are 
naturally viewed as weights. As such, RFI values can 
plausibly be used to offer guidance in portfolio con-
struction along the lines of a traditional returns-based 
style analysis (RBSA).9 Assuming that investible proxies 
are available for the factors used in a given model, RFI 

9 Returns-based style analysis was introduced by Sharpe 
(1988, 1992). It is a way of analyzing and replicating investment 
strategies by means of investable proxies. The analysis is regression 

based, expressed formally as ∑α + β∑ +
=1

R R= α + β∑t
m

i tRi
ti

I
ε , where Rt

m is 
the return stream for the investment strategy to be replicated, Rt

i 
is the set of return streams for the proxy returns, I is the number 
of investable proxies, and tε  is the error term. Two important con-
straints are put in place to produce a combination of investable 
proxies suitable for a long-only implementation. First, each beta 
coefficient is constrained to be greater than zero—that is, β > ∀0,  .∀ii  

Second, the sum of the betas is constrained to sum to unity—that 

is, ∑ β =
=

1.
1 ii

I
 As such, each beta is interpreted as a weight assigned 

to a particular investable proxy in a replication portfolio.

values can be used to inform the weighting of the proxies 
used as constituents in a portfolio seeking to mimic the 
behavior of a target strategy. The RF model, however, 
possesses an advantage over a standard RBSA in gener-
ally providing a much better fit, as evidenced by the R2 
values it produces.

USING FEATURE IMPORTANCES TO DERIVE 

PSEUDO-BETAS

Because the RF model captures hierarchical 
(non-geometric) relationships between factors, it cannot 
be understood as a direct analog of an OLS regression 
or PCA because it does not convey the individual direc-
tional relationships between factors and assets. It is nev-
ertheless possible to provide an interpretation of the RF 
model output so that the inf luence of the predictors can be 
understood in a way that is similar to traditional models. 
Previous attempts to “beta-ize” tree-based predictors 
have, for the most part, been of a more formal nature 
(e.g., Friedman 2001). Here we take a more conceptual 
approach because our goal is merely to provide a transla-
tion of the RF model output to individuals who are more 
familiar with linear models. We do not recommend using 
the results of the translation for trading applications, but 
simply as a communication device. 

Recall that a widely accepted definition of beta is 
the elasticity of one variable to another. If we assume 
factor independence, then as a first step we can simply 
divide the predicted target variable return by each pre-
dictor return to gain a raw elasticity value for each factor. 
For example, let us consider the returns at the median 
for the industrials sector in Exhibit 5 referenced earlier. 
In the following, we list the sector and factor returns, 
along with the raw factor elasticity values in parentheses 
next to each.

The raw elasticity values indicate a sort of ceteris 

paribus degree of target variable sensitivity to each pre-
dictor; however, the raw values provide an incomplete 
picture of the relationship between target and predictor 
variables because they do not account for each factor’s 
importance as a predictor, something expressed by RFI 
values. As such, our second step is to weight each factor’s 
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E X H I B I T  5
Factor Percentile Returns and Equity Sector Predicted Values (monthly returns, Jan 1991 to Aug 2018)

Source: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html and Natixis Investment Managers.
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respective raw elasticity by its RFI to obtain a set of 
importance-adjusted elasticity values or pseudo-betas:

We formally express the entire operation as

 
×Target variable rr value

Predictor value
Feature impom rtance

 

Again, it is important to keep in mind that the 
intent here is not to discard the actual results of the anal-
ysis but to provide a simple way to facilitate communica-
tion with investment professionals who are accustomed 
to OLS betas, PCA loadings, and the like.

TRADING APPLICATION: BUILDING 

A SECTOR ROTATION STRATEGY USING 

THE RF FFC MODEL AND ASSOCIATION 

RULE LEARNING

In the previous sections of the article, we have 
shown how to use the RF algorithm to decompose risk 
ex post. In what follows, we adapt the framework for 
its use ex ante in trading applications. In particular, we 
apply our RF variant of the FFC model to build a sector 
rotation strategy. In doing so, we demonstrate how com-
bining the output of an RF model with a simple, almost 
primitive signal can generate tradable information and 

provide the rudiments to developing a more sophisticated 
investment strategy. We do this to demonstrate the power 
of the RF model and to show that its effectiveness as an 
alpha generation tool does not necessarily depend on a 
complicated implementation. 

We develop our trading strategy with the help 
of another machine learning methodology known as 
association rule learning (ARL) (Agrawal, Imieliński, and 
Swami 1993). ARL is a framework originally developed 
for discovering the relationships between sets of variables 
in a database. It can alternatively be viewed as a frame-
work for deriving (learning) deductive inference rules from 
empirical data. In our example, we use ARL to establish a 
relationship between a pair of signals and the one-month-
ahead return for a given sector over 18-month rolling 
windows. The signals are the RF-predicted return of a 
sector and the ratio of shorter-term to longer-term realized 
volatility (24-month vs. 36-month).10 If (1) a positive rela-
tionship has been established between our signals and the 
one-month-ahead returns over the preceding 18-month 
window, (2) the ratio of shorter-term to longer-term vola-
tility is less than one, and (3) the RF-predicted return for 
next month is greater than a designated threshold value, 
then we will own the sector for the month. Otherwise, the 
portfolio will carry a zero weight in the sector. The sectors 
that are owned will be equally weighted. We describe the 
association, trading, and portfolio construction rules that 
frame the strategy in formal detail in Exhibit 7.

We display out-of-sample backtest (Panel A) and 
bootstrap11 results (Panel B) in Exhibit 8, comparing 
both unconstrained and constrained versions of our 
active strategy with a passive equal-weight portfolio.12 
In Exhibit 9, we show the cumulative out-of-sample 
backtest performance of each strategy. As we see in 
each exhibit, the active strategy outperforms the “no 
information” equal-weight portfolio, both in uncon-
strained form and with turnover constraints. The 
active strategy also exhibits respectable values for the 

10 The ratio of longer-term to shorter-term volatility has 
also been shown to reinforce other types of market signals (e.g., 
momentum). See Wang and Xu (2015) and Simonian et al. (2018).

11 For the bootstrap, we use the stationary bootstrap approach 
described by Politis and Romano (1994), with an average block size 
of six months. The values in the exhibit are obtained by averaging 
500 bootstrap samples.

12 For each asset, Constrained active weight = Unconstrained active 

weight × 30% + 70%
#

.

E X H I B I T  6
Relative Feature Importance of Fama–French–Carhart 
Factors (Jan 1991 to Aug 2018)

Source: Natixis Investment Managers.
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aAn additional way of measuring rule strength is via the confidence of a rule, X ⇒ Y, where

∪ ∪
= =

∈ ⊆∪
∈ ⊆

)⇒
( )∪

( )

|{ }; |

|{ }; |
conf X(n

supp ∪
supp

Y∪∪ t

t T∈ X Y⊆
bIt is also possible to construct our trading rule using the confidence of a rule:

>α >β =

< >α β

< >α+

+

+
1 ˆ ) )⇒ >β

# ( 1 ˆ , )>β

# ( 1 ˆ )1>α +>α ⇒ +⇒

1+α +

1

conf V((n R r<1 ˆVV

of h VR >α+ >α>α
Window length

of h VR

Window length

t t,rr< , t

t t< ,rr t

t t<1,rr

Source: Agrawal, Imieliński, and Swami (1993).

E X H I B I T  7
Sector Rotation Strategy Rules

⇒
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α β
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| |
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∪ | ∈ ∪ ⊆ | | |
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×
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E X H I B I T  8
Sector Rotation Strategy Backtest and Bootstrap Results (Jan 1997 to Aug 2018)

Source: Natixis Investment Managers.

Panel A: Out-of-Sample Backtest Results

Panel B: Bootstrap Performance Results

Equal-Weight
Unconstrained
Strategy
Constrained
Strategy

Equal-Weight
Unconstrained
Strategy
Constrained
Strategy

Annualized
Return

10.0%

12.9%

11.0%

11.0%

12.2%

11.4%

Annualized
Volatility

13.8%

14.2%

13.6%

13.4%

14.4%

13.4%

PSharpe
0.0

99.2%

99.9%

99.7%

96.7%

97.6%

97.3%

PSharpe
0.1

78.8%

94.9%

87.3%

78.9%

82.2%

81.3%

PSharpe
0.2

23.4%

53.8%

35.0%

43.0%

45.8%

45.9%

PIR 0.0

N/A

96.9%

97.8%

N/A

66.7%

66.7%

PIR 0.1

N/A

60.3%

66.1%

N/A

25.7%

25.8%

PIR 0.2

N/A

10.3%

13.6%

N/A

4.2%

4.3%

Turnover

0.0%

74.6%

22.4%

0.0%

85.4%

25.6%

Total
Cumulative

Return

632%

1106%

773%

982%

1202%

1041%

E X H I B I T  9
Cumulative Out-of-Sample Backtest Performance of Sector Rotation Strategy vs. Equal-Weight Portfolio 
(Jan 1997 to Aug 2018)

probabilistic Sharpe ratio (PSharpe) introduced by Bailey 
and López de Prado (2012)13 and favorable values for the 

13 The PSharpe is defined as 
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43
4 2

PSR(SS Z=)∗ n

SR SR
 

where Z [·] is the cumulative distribution function of a standard 
normal distribution, and SR is the observed Sharpe ratio. SR∗ is the 

information ratio variant of the PSharpe (PIR), where 
the equal-weighted portfolio is used as the benchmark. 
The PSharpe measure is designed to show the probability 
of a strategy achieving a given Sharpe ratio threshold 
given a specific track record or backtest length and the 

predefined benchmark Sharpe ratio (ex ante Sharpe ratio), n is the 
number of periods over which the strategy’s performance is tested, 
and ˆ

3 and γ̂ 4 are the respective observed skewness and kurtosis 
values of the strategy.
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presence of non-normal returns. The comparatively 
favorable results for our active investment strategy dem-
onstrate that even with the barest of inputs, machine 
learning methods—and the RF and ARL frameworks in 
particular—provide powerful means to uncover useful 
patterns in investment data. It is a given that the strategy 
presented here could be built up and improved upon, 
with the introduction of new factors and/or a more 
nuanced treatment of existing inputs. Nevertheless, 
the results here convincingly speak to the investment 
insights that can be gained by practitioners willing to 
incorporate machine learning methods into their invest-
ment process.

CONCLUSION

Machine-learning approaches to risk factor mod-
eling offer investment practitioners the ability to enrich 
their analysis by providing insight into relationships 
between variables that are unaccounted for in more tra-
ditional models such as OLS regression. By means of the 
RF algorithm, the authors uncover nonlinear relation-
ships and interaction effects between the well-known 
FFC factors and show how to translate the output from 
the RF model so that it has the basic form of a more 
traditional factor model. In the last section of the article, 
the authors combine the RF algorithm with another 
machine learning framework, association rule learning, 
to build a sector rotation strategy. The article thus dem-
onstrates that machine learning approaches can inform 
both risk analysis and portfolio management, providing 
readily usable output that can be communicated in a 
straightforward manner.
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